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I. Introduction. A uniqueness theorem for the second order linear

parabolic boundary value problem can be given under fairly unre-

restrictive conditions with respect to the coefficients, boundary

values, and domain. However, care must be taken to avoid counter-

examples such as the following: let L{u) =xuxx — ut = 0 be defined on

D= {(x,t): Kx<2,0<t< » }.Then if cl(D) = closure of D, consider

the boundary conditions u(x, t) =0 on {t = 0}f\c\(D) and du/dv(x, t)

= 0on {x=l, 2}r\cl(D) where v(x,/) = (-l, -t) on {x = l\nd(D)

and v(x, t) — {2, t) on {x = 2\(~\c\(D). L{u) is uniformly parabolic,

but u(x, t) =e~xlt is a nontrivial solution.

The above example contradicts Theorem 8, p. 176 of [2] since that

theorem does not exclude derivatives in directions with negative

time components. In the following section, we formulate a uniqueness

theorem stronger than those stated in [l] and which avoids situations

like the above by assuming conditions on the boundary or boundary

operator which prevent positive maxima (or negative minima) in the

case of homogeneous boundary data.

II. Results. By a domain D, we mean an open set in Rn+l whose

points are denoted by (x, t) = {x\, • • • , x„, /)• cl(Z>) denotes the

closure of a set D, int (D) its interior, and dD its boundary. For our

purposes, D lies above the hyperplane í = 0 and DT = Dr\[0<t<T}

is bounded for each T>0. Furthermore, we suppose that B=c\(D)

r\{t = 0} 5¿0 and that any point P£D can be connected to some

point Q£-B by a curve in D with nonincreasing ¿-coordinate. Let

S = dDr\{0<t<co } and ST=dDi~\{ 0<t g T} for each 7>0. Bold-
face letters like v = (pi, • • • , vn+i) denote vectors in Rn+l. A point

(x, t)ÇE.dD and a direction v are said to satisfy the (inside) sphere

property if there is a ball K with center (x, t), X9¿x and KT\dD

= (x, t) while int(ÜC)CZ) and starting from (x, t), — v points into K.

In particular, the sphere property is satisfied at a point (x, t) with

respect to the appropriate directions if dD in a neighborhood of (x, t)

is a C2 manifold whose tangent hyperplane at (x, /) is not of the form

t = constant. The analogous statement is not true for C1 manifolds.

All functions considered will be real-valued. Let L(u) be the operator
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on D defined by

n n

L(u) =   23 aa(x, t)uXiXj(x, 0 + Z) *»'(*> l)uXi(x, t)
(1) «,3-1 «=i

+ c(x, t)u(x, t) — ut(x, t)

where an and 6,- are bounded. Furthermore assume L(u) is uniformly

parabolic on D, i.e.

n

Z  ««(*, Ofrfy ^ M > 0
»',3 = 1

for all O. OGP and for all í = (€1, ■ • • , y£Ä" with |È|«-fi+ • • •
+£« = 1. We shall consider boundary conditions of the form

(2) aO, t)u + 00, l)(du/dv(x, t)) = gi'x, t)        on St or 5

(3) «0, 0) = £i(x)        on B

where v(x, /) is a direction and

du du(P)
-=    lim   —-— ,        PED.
dv(x,t)        p~(X,t) d\(x,t)

By a solution u(x, t) =u(xi, ■ ■ ■ , xn, t) of L(u) =/(x, t) or L(u) ^0 on

D or DT, we mean a continuous function on cl(D) or cl(J>>r) with

uXiXj and ut continuous on D or Dt-

We can now state our uniqueness theorem:

Theorem 1. Let u(x, t) be a solution of L(u) =f(x, t) in DT subject to

the boundary conditions (2), (3) with the added stipulation that — v(x, /)

points into DT, a2+j32?i0, and a, ß^O. Now suppose

(i) c(x, ¿) =0 and at each point (x, t)ESr, either a(x, 1)^0 or (x, t)

and v(x, t) satisfy the sphere property. Then if v is another solution of

L(u) =/(x, t) subject to the same boundary conditions, u=v. The same

condition is also true if instead of (i) we have

(ii) c(x, t) is uniformly bounded for t<T, vn+i(t, x)^0 for (x, t)

ESTr\ {0 <t < T], and for (x, t) ESTC\ {0<t < T} one of the following

holds :
(a) O, t) and v(x, t) satisfy the sphere property,

(b) a(x, t)>0,

(c) vn+i(x,t)^0.

Proof. The key to the proof is the strong maximum principle for

uniformly parabolic operators. The form we shall use is stated below
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and its proof follows from the methods and remarks given in [2, pp.

163-177].
MAXIMUM PRINCIPLE. Let u be a solution of L(u)^0 where

L(u) is defined as above and c(x, t) =0. Then if the maximum of u on

c\(DT) occurs at P(E.Dt, we have that u(P) =u(Q) for any QE:DT that

can be connected to P by a curve with nondecreasing t-coordinate.

The second result we need for the proof is the following directional

derivative property. It can be found in [l, p. 49], or [2, p. 174].

DIRECTIONAL DERIVATIVE PROPERTY. Let PEdD and v
satisfy the sphere property with respect to the ball K. Furthermore, let u

be a solution of L(u) =0 where L(u) is as above and where u does not

attain its maximum in int (K). Then (du/dv)(P)>0. Suppose v is

another solution of L(u)=f(x, t) satisfying the same boundary con-

ditions as u. Then w = u— v is a solution of L(w)=0 satisfying the

homogeneous boundary conditions w = 0 on B and

a(x, t)w + ß(x, t)(dw/dv(x, t)) =0        on St-

Now consider the case where (i) holds. Then if the maximum M of w

on c\(Dt) occurs at P and if P(EDt, by the maximum principle and

our assumptions on DT, Af_0. On the other hand, if P = (x, t)EST,

the boundary condition at P is

(4) a(x, t)w + ß{x, t)(dw/dv(x, t)) = 0

with a(x, /) and ß(x, t) being nonnegative and not vanishing simul-

taneously. Since P is a maximum, dw/(dv(x, t)) 5:0. Hence a(x, t) >0

contradicts (4) if M>0. But if a(x, /) =0, then the directional deriva-

tive property can be used to obtain dw/(d\(x, t))>0 which also

contradicts (4) if M>0. Hence M = 0. Similarly, by considering —w,

the minimum is nonnegative. Thus w = 0.

In the case where (ii) holds, we may argue as above to obtain M = 0

if P(£Dt, provided that the maximum principle applies. This is the

case for z = e~uw when X^O large enough to make the coefficient of

z in the equation (L— X)(z)=0 nonpositive. But z^O implies w = 0,

so M = 0 if z = 0 for PÇzSt- Furthermore if X^O is chosen large

enough, we may suppose that z does not have a positive maximum on

d(D)r\{t=T}. On STr\{0<t<T], the boundary condition for z is

[a(x, t) + \ß(x, t)vn+1(x, l)]z + ß(x, t)(dz/dv(x, t)) = 0.

However, since [a(x, t)-\-\ß(x, t)vn+i(x, t)\ and ß{x, t) are both non-

negative and not simultaneously zero, the same type of argument as
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used under (i) implies z á 0 on St. Hence M ^ 0. Similarly by consider-

ing — w, the minimum is nonnegative. Thus w = 0.
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AN ELEMENTARY DERIVATION OF KHINTCHINE'S
ESTIMATE FOR LARGE DEVIATIONS

MARK PINSKY1

1. Introduction. In classical proofs of the law of the iterated loga-

rithm, the estimate

(1.1) P(Sn/Vn ^ an) = exp[- (a'/2)(l + o(l))]        (n Î «)

plays a key role (see [3, pp. 41-49]). Here S„ is a sum of ra independent

identically distributed random variables with mean zero and variance

one; {an} is a fixed numerical sequence with some growth property.

The first direct proof [2 ] of inequalities of this type involved cumber-

some estimates of bilateral Laplace transforms and was restricted to

bounded random variables. More recently, proofs of (1.1) and re-

lated inequalities have been derived as a corollary to global inequali-

ties of the Berry-Essen type:

/ Sn        \       ra exp(-t2/2)
(1.2) P[—Za)=\ 7 dt + 00-1/2)        (nî»)

\Vra       /     Ja       (2w)112

when the error is uniform in a£( — °o, «>). The key observation in

these proofs is that for a suitable choice of a = a„, the error term in

(1.2) can be absorbed into the Gaussian term (see [l, pp. 212-219],

and [4]).

The purpose of this note is to point out that the idea of absorbing

the error can be applied to a (much more easily proved) smoothed

version of (1.2) to yield (1.1). The proof is based on Trotter's method

of operators [5], which is presented in the lemma below. The whole

point is that while Trotter's method seems incapable of yielding
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