
REFLEXIVITY OF CYCLIC BANACH SPACES

L. TZAFRIRI1

In a Banach space 3E with an unconditional basis {en} the projections

E(a); <tQN= {1, 2, 3, • • • , n, ■ ■ ■ } defined by £(<r)(I>_iaBeB)

— ^nenoinen; ^rc°liane„G£ form a <r-complete atomic Boolean

algebra of projections S for which there exists a vector XoÇï (for

instance, x0= Sn=ißn/2"||e„||) such that ï = clm{£x0|£GS}- Viewed

from this point, the Banach spaces having unconditional basis form

a subclass of the family of cyclic spaces ï = clm{Px0|PG<B} for some

XoGï and a c-complete (not-necessarily atomic) Boolean algebra of

projections (B on ï. Cyclic spaces have been introduced by W. G.

Bade [l], [2] in connection with the multiplicity theory for spectral

operators on Banach spaces. A typical example is Li(0, 1), the space

of all integrable functions on [0, l], which has no unconditional basis

(cf. A. Pelczynski [13, Proposition 9]) but is a cyclic space with

respect to the Boolean algebra of projections consisting of "multipli-

cations" by characteristic functions.

W. G. Bade suggested recently in a discussion that it might follow

from the theory of normed lattices that a cyclic space is reflexive pro-

vided its second conjugate is separable. Using a theorem of T. Ogasa-

wara [12] on normed Riesz spaces we shall be able to prove in the

present note that reflexivity of a cyclic space £ is insured by the

condition (weaker than separability of the second conjugate) that

neither h nor Co would be isomorphic to a subspace of H. This result

generalizes a well-known characterization of reflexivity for spaces

with unconditional bases given by R. C. James [5].

Other properties of Banach spaces in connection with Boolean al-

gebras of projections have been described recently in [ó], [7], [lO],

[14].

1. Preliminaries. In this section we shall summarize briefly some

notion and results needed in the sequel. A Boolean algebra of projec-

tions 03 is called complete (cf. W. G. Bade [l]) if for every family

PaQ(S> the projections VPa and APa exist in (B and satisfy

(VP„)3£ = clm{Pa*} ;       (APa)3Ê = f\(PJ,).

If <B is complete then there is a uniform bound M for the norms of the

projections P£(B (cf. W. G. Bade [l, Theorem 2.2]). Regarding 03 as
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a spectral measure P(-) on the Borel sets S of its Stone space ß, it

follows from N. Dunford [3] that for every bounded Borel function/,

the integral S(f) =Jsf(co)P(du) exists in the uniform operator topology

and satisfies:

\\S(f)\\ g4Jfsup|/(«)|.
«en

If/is not bounded and em= {wlco£ß, |/(co)| ^m},m = l,2, • • • , the

operator S(f) is unbounded having the domain

D(S(f)) =  <x|x£X, lim    J   f(u)P(du)x exists > .

In presenting definitions and results concerning normed lattices we

will make use of the terminology and references from W. A. J. Luxem-

burg and A. C. Zaanen [8, Notes VI and XIII]. Accordingly, a real

Banach space L is called a complete Riesz normed space if it is par-

tially ordered by ^ such that:

(i) «|s implies u+w^v+w for every u, v, wEL.

(ii) u^0 implies au^O for every a^O.

(Hi) For every pair u, vEL, the least upper bound sup(«, v) and

the greatest lower bound inf(/, g) exist in L.

(iv) The norm satisfies ||w|| á||i>|| if |«|^|»| (where \u\ =

sup(u,—u)).

A Riesz space L is said to be o'-Dedekind complete if every sequence

in L which is bounded from above has a least upper bound. The nota-

tions ur I 0 for a net {uT} EL means {uT} is a decreasing net whose

greatest lower bound is zero.

The following theorem due to T. Ogasawara [12, Chapter V, §4,

Theorem l] is stated here in the form found in W. A. J. Luxemburg

and A. C. Zaanen [8, Note XIII, Theorem 40.1].

Theorem A. A complete Riesz normed space L is reflexive if and only

if the following three conditions are satisfied :

(a) Mr I 0 implies ||wT||—»0/or every net {uT} EL.

(b) <pr I 0 implies \\(pr\\—>0 for every net {<pr}EL* (L* is the con-

jugate of L).

(c) ur^0 and sup|j«T|| < + °° implies supTwr£L for every increasing

net {uT} EL.

2. Reflexivity of W(x0). Throughout this section Û3 will denote a

complete Boolean algebra of projections on the Banach space ï for

which there exists XoEX such that

Ï = 2R(*o) = chn{P*o| P £ 03}.
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The uniform bound for the norm of the projections PQ(Z will be

denoted by M. According to W. G. Bade [2, Theorem 4.5],

3- = {S(f)x0\x0QD(S(f))}.

Lemma 1. For each xQH, define \x\ by \x\ =sup||.S(0)x|| where the

supremum is taken over all Bor el functions <pfor which 14>(œ) | á 11 «££2.

Then | • | is a norm on ï equivalent to the original norm \\ ■ \\ and such

that:

(a) ||x||á |x| ^4M||x||; xQX.

(b) If S(fi)x0Qx' andfi(o))^fi(co)^:0; wQQfor some Bor el function

fi then S(fi)xoQH and \ S(fi)xo\ è | S(fi)x0\.
(c) |P|^1; PQ®.

(d) |5(/)x0|=|5(|/|)xo|;5(/)xoGÏ.

The proof follows immediately from the definition of [ x| and prop-

erties of operators S(f), and we omit it.

Denote ï(r) = {xQz'\x = S(f)xo\f real}. Obviously £(r) is a real

Banach space which can be ordered by setting S(fi)xoI!lS(fi)xo when-

ever /i(co)^/2(co) a.e. in 0. Let us remark that 3£w can be considered

as the "real part" of £. In view of Lemma 1, part (b) and the Lebesgue

Dominated Convergence Theorem for vector measures (cf. [4, IV-10-

10]) we have the following lemma.

Lemma 2. {ïw, il} is a complete Riesz normed space. Moreover, it

is a-Dedekind complete.

Now, denote as usual by c0 the space of sequences convergent to

zero and by h the space of sequences whose series are absolutely con-

vergent.

Lemma 3. If no subspace of ï(r) is isomorphic to Co then for every in-

creasing sequence 0~<:-S(fi)xo~~<S(f'>)xn~^ • • • with sup„| S(fn)xo\ < + °°

we have XoQD(S(supnfn)), i.e. S(supnfn)xoQl(r).

Proof. Assume there exists in £(r) an increasing sequence

0^5(gi)xo^5(g2)x0^ • • • with |S(g»)*o| ^K, w = l, 2, • • • such

that g(w) =sup„ gB(tt) is not integrable with respect to the vector mea-

sure P(-)x0. According to W. G. Bade [2, Theorem 4.3], there exists

a functional x*E(X(r>)* such that p(-) =x*P(-)x0 is a positive

measure equivalent to the vector measure P(-)xo. Since

/gn(w)p(du) Û K\\x*0\\,       u = 1, 2, • • • ,
Q

by Fatou's Lemma (cf. [4, III-6-19]), g is integrable with respect to
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ß and therefore it is finite a.e. in fl. Consequently ß = LC-i5m where

5m= {w|co£ñ, m — lá¿(w) <m}. By a theorem of Lusin (cf. [4, III-

6-3]) we can assume with no loss of generality that {gn} converges

^-uniformly to g, i.e., there exists a sequence of disjoint Borel sets

{o-p} such that ß = U"-i<rp and {gn} converges uniformly to g on

every set ap, p — 1, 2, • • • . The subsets hmC\<jp, m, p = 1, 2, • • • form

a sequence of disjoint subsets of ß which will be denoted by {r¡k}.

Obviously, ñ = U*'-i'í*'
If 17* =: bmki^aPk let us set

fc=E *»*X, j = 1, 2,
*-=i

where x, denotes the characteristic function corresponding to the set

r¡. It follows immediately that XoED(S(<j>j)),j = i, 2, ■ - • ; O^S(4>i)xo

ll5(</)2)xoZl • • •   and

S(<t>j)x0\   = J2 mkP(r¡k)x0
k-l

2 (W* —  l)P(77t)*o
t-1

+ p (A •)*0

Hence, by Lemma 1 we have

S(4>i)x01  á    ¿f g(u)P(du)xo + u>

and since the convergence is uniform on Ui-i'?*

|S(fc)*o|   £*+ |*o|,       /= 1, 2, •• •.

Furthermore, ^>(w) = sup,<bj(o}) =mk~^g(<ji) for aEVk which implies in

view of Lemma 1, part (b) that x0ED(S(cj>)). Thus, the sequence

{S(<pj)xo} has no limit. The following arguments are similar to those

used by R. C. James in [5, Lemma l]. Since the sequence {5(0,)xo}

is not convergent one can easily construct an increasing sequence of

integers {/„} such that \S(<f>jn+i)x0 — S(d)jn)xo\ è«; n = l, 2, • • -for

some e>0. Set\{/„=<pjn+1—d)jn and remark that the functions^« have

disjoint supports and

«a   \S(tn)Xo\   S2(K+   1*01),

For any sequence (orn)£co observe that

n = 1, 2,

]£ an^„(w) é   max *',„(«)>
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which implies in view of Lemma 1, part (b) that

¿2 anS(\l/n)xo max   j an\ (K + \ x0\).

Consequently, 2Z"„ ian5(^„)x0 converges and

X) ClnS(tn)X0 Ú(K+ |xo|)sup|«B|.

On the other hand, according to Lemma 1, part (c)

X a„S(^n)xo =  \ an\\ Styn)x0\  èe|aB|,        «=1,2,

i.e.

23 ClnS(tn)Xo ;= e sup I an j

Thus the subspace clm{5(^B)x0; w = l, 2, • • • } is isomorphic to c0,

which contradicts our hypothesis. Q.E.D.

The next step will be to study £*, the conjugate of £. Let S(f)*

= ff(o))P*(da)) be the adjoint of the closed, densely defined operator

S(f)=ff(oi)P(do}), D(S(f)*) its domain and x0*G(*(r))* the func-
tional already introduced in the proof of the previous lemma whose

construction is given by W. G. Bade [2, Theorem 4.3]. According to

W. G. Bade [2, Theorem 8.4]

**= {S(f)*x*\x*aQD(S(f)*)}

and hence (£«)* = {S(f)*x*\x*QD(S(f)*), f real}. One can easily

see that (ïw)* with the order S(fi)*x*d:S(fi)*x* whenever fi(a)

^fi(o}) a.e. in ß is also a complete Riesz normed space (see also W. A.

J. Luxemburg and A. C. Zaanen [8, Note VII, Theorem 22.5]).

Lemma 4. // no subspace of £(r) is isomorphic to k then for every de-

creasing sequence S(fi)*x0^ZS*(fi)x*^i • • • whose greatest lower

bound is 0 we have lim,,-,«,) S*(fn)x*\ =0.

Proof. Suppose there exists a decreasing sequence S(hn)*x*

E(X(r>)* such that limB^.wÄB(co) =0 a.e. in Q and \S(hn)*x*\ ^e for

some e>0. By arguments already used in the proof of the previous

lemma we can construct a sequence of Borel sets fiDßOß2D ■ • •

DtipD • • -such that {äb(w)} converges uniformly for w£iîp' =

Q—Qp,p = l,2, • • • , and fl^,,, Qp = 0. Obviously for every p there



66 L. TZAFRIRI [July

exists an integer np (and we can assume that «i<«2< ■ • ■ <nv

< • ■ ■ ) for which |S(Ä. xo',")**?! <e/2. Thus

| S(hiXQp) xo |  ^ | S^Xn,,) *o |  è | 5(*»^ *o |  - | S(*»,xO *o |

^ e - e/2 = e/2,        ¿ = 1, 2, • • • .

Therefore we can find vectors xp = S(gp)xoE'!i{r) with |5(gj,)x0| =1

and such that

.*   *^
[S(hi) Xo][S(gpXap)xo] â e/4,        /> = 1, 2, • • • .

Consequently [S(hi)*x*][S(\gP\xap)xo]^e/4,p = 1,2,

Since in general the functions | gp\ xa have no disjoint supports one

can find an increasing sequence of integers {ps} such that the func-

tions <bs = | gp,| Xsip.-ßp,   ; s=l, 2, • • • , have disjoint supports and

[S(hi)*x*o][S(<t>a)xo] ^ e/8;       í = 1, 2, • • • .

Hence, for any sequence (a„) Eh we obtain

00 00 I

| S (hi) Xo | E I «« I   =1 •S'(Äi) *o |   E a«S(<í>.)*o
«=i ¿¡-.i

/      00 \ I

^  | S(hi) x0\ SÍ ^ as<t>8 ) Xo

1/00 \ 1
S[ E |«.|*.)*o

\ s=l /

€

= E I ««I tW *o][5(*.)xo] è — E I a.| ,
«=i 8 s=i

i.e., ¿i is isomorphic to the subspace clm{5(0j)xo; s = l, 2, • • • j,

which is a contradiction. Q.E.D.

Theorem 5. The cyclic space % = 9J2(x0) is reflexive if and only if no

subspace of it is isomorphic to either k or Co.

Proof. Since every subspace of a reflexive space is also reflexive no

subspace of H can be isomorphic to k or c0 provided £ is reflexive. To

prove the converse notice first that it suffices to show that ï(r) is

reflexive. For this purpose we shall use Theorem A. Indeed, condition

(a) of this theorem holds in view of a theorem of H. Nakano [ll, pp.
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321-322] (see also W. A. J. Luxemburg and A. C. Zaanen [8, Note

X, Theorem 33.4]), the Lebesgue Dominated Convergence Theorem

for vector measures and the fact that 36w is (r-Dedekind complete.

Condition (b) follows from W. A. J. Luxemburg and A. C. Zaanen

[8, Note X, Theorem 33.8], (used for (36(r))*), again the Lebesgue

Dominated Convergence Theorem, and Lemma 4 provided no sub-

space of 36(r> is isomorphic to lv Finally, if no subspace of 36(r) is iso-

morphic to Co, Lemma 3 and W. A. J. Luxemburg and A. C. Zaanen

[8, Note XI, Theorem 34.2] imply that condition (c) is also satisfied.

This completes the proof.

Corollary 6. If 36** is separable then 36 is reflexive.

Proof. If 36 has a subspace isomorphic to either c0 or k then 36**

cannot be separable since (c0)** = m and li* = m (m denotes the space

of all bounded sequences) and m is not separable.

Remarks. 1. This corollary can be proved directly by using Lemma

2 and another result of T. Ogasawara [12, Chapter V; §4, Theorem 3]

(see also W. A. J. Luxemburg [9, Theorem 45.1]).

2. Corollary 6 is not true for an arbitrary Banach space (cf. R. C.

James [S]).

3. In connection with the proof of Lemma 4, one can observe that

if e, denotes the support of <p, then

_-,- A    [S(hl)*x*o][S(fXe.)xo]
PS(f)x0 = 2-    r-,, w, «1rg,. x    i   Sv*«)*o

-1    [S(hi)*x*][S(<pi)xo\

is a bounded projection (with norm < (8/e) | S(h) *x* | ) onto the

subspace elm {5(</>a)xo| 5 = 1, 2, • • • } which is isomorphic to h. Similar

arguments show that in Lemma 3 the subspace clm{5(0B)xo; w = l,

2, • • • } (which is isomorphic to Co) is also the range of a projection

with norm<(K+\x0\)/e.
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