## REFLEXIVITY OF CYCLIC BANACH SPACES

L. TZAFRIRI1

In a Banach space  $\mathfrak{X}$  with an unconditional basis  $\{e_n\}$  the projections  $E(\sigma)$ ;  $\sigma \subset N = \{1, 2, 3, \cdots, n, \cdots\}$  defined by  $E(\sigma)(\sum_{n=1}^{\infty} \alpha_n e_n) = \sum_{n \in \sigma} \alpha_n e_n$ ;  $\sum_{n=1}^{\infty} \alpha_n e_n \in \mathfrak{X}$  form a  $\sigma$ -complete atomic Boolean algebra of projections  $\mathcal{E}$  for which there exists a vector  $x_0 \in \mathfrak{X}$  (for instance,  $x_0 = \sum_{n=1}^{\infty} e_n/2^n ||e_n||$ ) such that  $\mathfrak{X} = \text{clm}\{Ex_0 \mid E \in \mathcal{E}\}$ . Viewed from this point, the Banach spaces having unconditional basis form a subclass of the family of cyclic spaces  $\mathfrak{X} = \text{clm}\{Px_0 \mid P \in \mathfrak{B}\}$  for some  $x_0 \in \mathfrak{X}$  and a  $\sigma$ -complete (not-necessarily atomic) Boolean algebra of projections  $\mathfrak{B}$  on  $\mathfrak{X}$ . Cyclic spaces have been introduced by  $\mathfrak{W}$ . G. Bade [1], [2] in connection with the multiplicity theory for spectral operators on Banach spaces. A typical example is  $L_1(0, 1)$ , the space of all integrable functions on [0, 1], which has no unconditional basis (cf. A. Pełczyński [13, Proposition 9]) but is a cyclic space with respect to the Boolean algebra of projections consisting of "multiplications" by characteristic functions.

W. G. Bade suggested recently in a discussion that it might follow from the theory of normed lattices that a cyclic space is reflexive provided its second conjugate is separable. Using a theorem of T. Ogasawara [12] on normed Riesz spaces we shall be able to prove in the present note that reflexivity of a cyclic space  $\mathfrak{X}$  is insured by the condition (weaker than separability of the second conjugate) that neither  $l_1$  nor  $c_0$  would be isomorphic to a subspace of  $\mathfrak{X}$ . This result generalizes a well-known characterization of reflexivity for spaces with unconditional bases given by R. C. James [5].

Other properties of Banach spaces in connection with Boolean algebras of projections have been described recently in [6], [7], [10], [14].

1. **Preliminaries.** In this section we shall summarize briefly some notion and results needed in the sequel. A Boolean algebra of projections  $\mathfrak B$  is called complete (cf. W. G. Bade [1]) if for every family  $P_{\alpha} \in \mathfrak B$  the projections  $\mathsf{V}P_{\alpha}$  and  $\mathsf{\Lambda}P_{\alpha}$  exist in  $\mathfrak B$  and satisfy

$$(\nabla P_{\alpha})\mathfrak{X} = \operatorname{clm}\{P_{\alpha}\mathfrak{X}\}; \qquad (\wedge P_{\alpha})\mathfrak{X} = \bigcap (P_{\alpha}\mathfrak{X}).$$

If @ is complete then there is a uniform bound M for the norms of the projections  $P \in @$  (cf. W. G. Bade [1, Theorem 2.2]). Regarding @ as

Received by the editors May 20, 1968 and, in revised form, February 5, 1969.

<sup>&</sup>lt;sup>1</sup> Supported by National Science Foundation Grant GP-7475.

a spectral measure  $P(\cdot)$  on the Borel sets  $\Sigma$  of its Stone space  $\Omega$ , it follows from N. Dunford [3] that for every bounded Borel function f, the integral  $S(f) = \int_{\Omega} f(\omega) P(d\omega)$  exists in the uniform operator topology and satisfies:

$$||S(f)|| \le 4M \sup_{\omega \in \Omega} |f(\omega)|.$$

If f is not bounded and  $e_m = \{\omega | \omega \in \Omega, |f(\omega)| \le m\}$ ,  $m = 1, 2, \cdots$ , the operator S(f) is unbounded having the domain

$$D(S(f)) = \left\{ x \mid x \in \mathfrak{X}, \lim_{m \to \infty} \int_{\epsilon_m} f(\omega) P(d\omega) x \text{ exists} \right\}.$$

In presenting definitions and results concerning normed lattices we will make use of the terminology and references from W. A. J. Luxemburg and A. C. Zaanen [8, Notes VI and XIII]. Accordingly, a real Banach space L is called a complete Riesz normed space if it is partially ordered by  $\leq$  such that:

- (i)  $u \le v$  implies  $u+w \le v+w$  for every  $u, v, w \in L$ .
- (ii)  $u \ge 0$  implies  $\alpha u \ge 0$  for every  $\alpha \ge 0$ .
- (iii) For every pair  $u, v \in L$ , the least upper bound  $\sup(u, v)$  and the greatest lower bound  $\inf(f, g)$  exist in L.
- (iv) The norm satisfies  $||u|| \le ||v||$  if  $|u| \le |v|$  (where  $|u| = \sup(u, -u)$ ).

A Riesz space L is said to be  $\sigma$ -Dedekind complete if every sequence in L which is bounded from above has a least upper bound. The notations  $u_{\tau} \downarrow 0$  for a net  $\{u_{\tau}\} \subset L$  means  $\{u_{\tau}\}$  is a decreasing net whose greatest lower bound is zero.

The following theorem due to T. Ogasawara [12, Chapter V, §4, Theorem 1] is stated here in the form found in W. A. J. Luxemburg and A. C. Zaanen [8, Note XIII, Theorem 40.1].

THEOREM A. A complete Riesz normed space L is reflexive if and only if the following three conditions are satisfied:

- (a)  $u_{\tau} \downarrow 0$  implies  $||u_{\tau}|| \rightarrow 0$  for every net  $\{u_{\tau}\} \subset L$ .
- (b)  $\phi_{\tau} \downarrow 0$  implies  $||\phi_{\tau}|| \rightarrow 0$  for every net  $\{\phi_{\tau}\} \subset L^*$  ( $L^*$  is the conjugate of L).
- (c)  $u_{\tau} \ge 0$  and  $\sup ||u_{\tau}|| < + \infty$  implies  $\sup_{\tau} u_{\tau} \in L$  for every increasing net  $\{u_{\tau}\} \subset L$ .
- 2. Reflexivity of  $\mathfrak{M}(x_0)$ . Throughout this section  $\mathfrak{B}$  will denote a complete Boolean algebra of projections on the Banach space  $\mathfrak{X}$  for which there exists  $x_0 \in \mathfrak{X}$  such that

$$\mathfrak{X} = \mathfrak{M}(x_0) = \operatorname{clm} \{ Px_0 \mid P \in \mathfrak{B} \}.$$

The uniform bound for the norm of the projections  $P \in \mathbb{G}$  will be denoted by M. According to W. G. Bade [2, Theorem 4.5],

$$\mathfrak{X} = \{ S(f)x_0 \mid x_0 \in D(S(f)) \}.$$

LEMMA 1. For each  $x \in \mathfrak{X}$ , define |x| by  $|x| = \sup |S(\phi)x|$  where the supremum is taken over all Borel functions  $\phi$  for which  $|\phi(\omega)| \le 1$ ;  $\omega \in \Omega$ .

Then  $|\cdot|$  is a norm on  $\mathfrak{X}$  equivalent to the original norm  $||\cdot||$  and such that:

- (a)  $||x|| \le |x| \le 4M||x||$ ;  $x \in \mathfrak{X}$ .
- (b) If  $S(f_1)x_0 \in \mathfrak{X}$  and  $f_1(\omega) \geq f_2(\omega) \geq 0$ ;  $\omega \in \Omega$  for some Borel function  $f_2$  then  $S(f_2)x_0 \in \mathfrak{X}$  and  $|S(f_1)x_0| \geq |S(f_2)x_0|$ .
  - (c)  $|P| \leq 1$ ;  $P \in \mathfrak{G}$ .
  - (d)  $|S(f)x_0| = |S(|f|)x_0|$ ;  $S(f)x_0 \in \mathfrak{X}$ .

The proof follows immediately from the definition of |x| and properties of operators S(f), and we omit it.

Denote  $\mathfrak{X}^{(r)} = \{x \in \mathfrak{X} | x = S(f)x_0 | f \text{ real} \}$ . Obviously  $\mathfrak{X}^{(r)}$  is a real Banach space which can be ordered by setting  $S(f_1)x_0 \preceq S(f_2)x_0$  whenever  $f_1(\omega) \leq f_2(\omega)$  a.e. in  $\Omega$ . Let us remark that  $\mathfrak{X}^{(r)}$  can be considered as the "real part" of  $\mathfrak{X}$ . In view of Lemma 1, part (b) and the Lebesgue Dominated Convergence Theorem for vector measures (cf. [4, IV-10-10]) we have the following lemma.

LEMMA 2.  $\{\mathfrak{X}^{(r)}, \leq\}$  is a complete Riesz normed space. Moreover, it is  $\sigma$ -Dedekind complete.

Now, denote as usual by  $c_0$  the space of sequences convergent to zero and by  $l_1$  the space of sequences whose series are absolutely convergent.

LEMMA 3. If no subspace of  $\mathfrak{X}^{(r)}$  is isomorphic to  $c_0$  then for every increasing sequence  $0 \leq S(f_1)x_0 \leq S(f_2)x_0 \leq \cdots$  with  $\sup_n |S(f_n)x_0| < +\infty$  we have  $x_0 \in D(S(\sup_n f_n))$ , i.e.  $S(\sup_n f_n)x_0 \in \mathfrak{X}^{(r)}$ .

PROOF. Assume there exists in  $\mathfrak{X}^{(r)}$  an increasing sequence  $0 \leq S(g_1)x_0 \leq S(g_2)x_0 \leq \cdots$  with  $|S(g_n)x_0| \leq K$ ,  $n=1, 2, \cdots$  such that  $g(\omega) = \sup_n g_n(\omega)$  is not integrable with respect to the vector measure  $P(\cdot)x_0$ . According to W. G. Bade [2, Theorem 4.3], there exists a functional  $x_0^* \in (\mathfrak{X}^{(r)})^*$  such that  $\mu(\cdot) = x_0^* P(\cdot)x_0$  is a positive measure equivalent to the vector measure  $P(\cdot)x_0$ . Since

$$\int_{\Omega} g_n(\omega)\mu(d\omega) \leq K||x_0^*||, \qquad u = 1, 2, \cdots,$$

by Fatou's Lemma (cf. [4, III-6-19]), g is integrable with respect to

 $\mu$  and therefore it is finite a.e. in  $\Omega$ . Consequently  $\Omega = \bigcup_{m=1}^{\infty} \delta_m$  where  $\delta_m = \{\omega | \omega \in \Omega, m-1 \leq g(\omega) < m\}$ . By a theorem of Lusin (cf. [4, III-6-3]) we can assume with no loss of generality that  $\{g_n\}$  converges  $\mu$ -uniformly to g, i.e., there exists a sequence of disjoint Borel sets  $\{\sigma_p\}$  such that  $\Omega = \bigcup_{p=1}^{\infty} \sigma_p$  and  $\{g_n\}$  converges uniformly to g on every set  $\sigma_p$ ,  $p=1, 2, \cdots$ . The subsets  $\delta_m \cap \sigma_p$ , m,  $p=1, 2, \cdots$  form a sequence of disjoint subsets of  $\Omega$  which will be denoted by  $\{\eta_k\}$ . Obviously,  $\Omega = \bigcup_{k=1}^{\infty} \eta_k$ .

If  $\eta_k = \delta_{m_k} \cap \sigma_{p_k}$  let us set

$$\phi_j = \sum_{k=1}^j m_k \chi_{\eta_k}; \qquad j = 1, 2, \cdots,$$

where  $\chi_{\eta}$  denotes the characteristic function corresponding to the set  $\eta$ . It follows immediately that  $x_0 \in D(S(\phi_j))$ ,  $j = 1, 2, \cdots; 0 \leq S(\phi_1)x_0 \leq S(\phi_2)x_0 \leq \cdots$  and

$$\left| S(\phi_j)x_0 \right| = \left| \sum_{k=1}^j m_k P(\eta_k)x_0 \right| \leq \left| \sum_{k=1}^j (m_k - 1)P(\eta_k)x_0 \right| + \left| P\left( \bigcup_{k=1}^j \eta_k \right)x_0 \right|.$$

Hence, by Lemma 1 we have

$$\left| S(\phi_j)x_0 \right| \leq \left| \sum_{k=1}^j \int_{\eta_k} g(\omega)P(d\omega)x_0 \right| + \left| x_0 \right|$$

and since the convergence is uniform on  $\bigcup_{k=1}^{j} \eta_k$ 

$$|S(\phi_i)x_0| \leq K + |x_0|, \quad i = 1, 2, \cdots.$$

Furthermore,  $\phi(\omega) = \sup_j \phi_j(\omega) = m_k \ge g(\omega)$  for  $\omega \in \eta_k$  which implies in view of Lemma 1, part (b) that  $x_0 \notin D(S(\phi))$ . Thus, the sequence  $\{S(\phi_j)x_0\}$  has no limit. The following arguments are similar to those used by R. C. James in [5, Lemma 1]. Since the sequence  $\{S(\phi_j)x_0\}$  is not convergent one can easily construct an increasing sequence of integers  $\{j_n\}$  such that  $|S(\phi_{j_{n+1}})x_0 - S(\phi_{j_n})x_0| \ge \epsilon$ ;  $n=1, 2, \cdots$  for some  $\epsilon > 0$ . Set  $\psi_n = \phi_{j_{n+1}} - \phi_{j_n}$  and remark that the functions  $\psi_n$  have disjoint supports and

$$\epsilon \leq |S(\psi_n)x_0| \leq 2(K+|x_0|), \quad n=1, 2, \cdots.$$

For any sequence  $(\alpha_n) \in c_0$  observe that

$$\sum_{n=p}^{q} \alpha_n \psi_n(\omega) \leq \max_{p \leq n \leq q} |\alpha_n| \phi_{j_{q+1}}(\omega),$$

which implies in view of Lemma 1, part (b) that

$$\left| \sum_{n=p}^{q} \alpha_n S(\psi_n) x_0 \right| \leq \max_{p \leq n \leq q} |\alpha_n| (K + |x_0|).$$

Consequently,  $\sum_{n=1}^{\infty} \alpha_n S(\psi_n) x_0$  converges and

$$\left| \sum_{n=1}^{\infty} \alpha_n S(\psi_n) x_0 \right| \leq (K + |x_0|) \sup_{n} |\alpha_n|.$$

On the other hand, according to Lemma 1, part (c)

$$\left|\sum_{n=1}^{\infty} \alpha_n S(\psi_n) x_0\right| \geq \left|\alpha_n\right| \left|S(\psi_n) x_0\right| \geq \epsilon \left|\alpha_n\right|, \qquad n=1, 2, \cdots,$$

i.e.

$$\left| \sum_{n=1}^{\infty} \alpha_n S(\psi_n) x_0 \right| \geq \epsilon \sup_{n} |\alpha_n|.$$

Thus the subspace  $\operatorname{clm} \{ S(\psi_n) x_0; n = 1, 2, \cdots \}$  is isomorphic to  $c_0$ , which contradicts our hypothesis. Q.E.D.

The next step will be to study  $\mathfrak{X}^*$ , the conjugate of  $\mathfrak{X}$ . Let  $S(f)^* = \int f(\omega)P^*(d\omega)$  be the adjoint of the closed, densely defined operator  $S(f) = \int f(\omega)P(d\omega)$ ,  $D(S(f)^*)$  its domain and  $x_0^* \in (\mathfrak{X}^{(r)})^*$  the functional already introduced in the proof of the previous lemma whose construction is given by W. G. Bade [2, Theorem 4.3]. According to W. G. Bade [2, Theorem 8.4]

$$\mathfrak{X}^* = \{ S(f)^* x_0^* | x_0^* \in D(S(f)^*) \}$$

and hence  $(\mathfrak{X}^{(r)})^* = \{S(f)^*x_0^* | x_0^* \in D(S(f)^*), f \text{ real}\}$ . One can easily see that  $(\mathfrak{X}^{(r)})^*$  with the order  $S(f_1)^*x_0^* \leq S(f_2)^*x_0^*$  whenever  $f_1(\omega) \leq f_2(\omega)$  a.e. in  $\Omega$  is also a complete Riesz normed space (see also W. A. J. Luxemburg and A. C. Zaanen [8, Note VII, Theorem 22.5]).

LEMMA 4. If no subspace of  $\mathfrak{X}^{(r)}$  is isomorphic to  $l_1$  then for every decreasing sequence  $S(f_1)^*x_0^* \succeq S^*(f_2)x_0^* \succeq \cdots$  whose greatest lower bound is 0 we have  $\lim_{n\to\infty} |S^*(f_n)x_0^*| = 0$ .

PROOF. Suppose there exists a decreasing sequence  $S(h_n)^*x_0^* \in (\mathfrak{X}^{(r)})^*$  such that  $\lim_{n\to\infty}h_n(\omega)=0$  a.e. in  $\Omega$  and  $|S(h_n)^*x_0^*| \ge \epsilon$  for some  $\epsilon>0$ . By arguments already used in the proof of the previous lemma we can construct a sequence of Borel sets  $\Omega \supseteq \Omega_1 \supseteq \Omega_2 \supseteq \cdots \supseteq \Omega_p \supseteq \cdots$  such that  $\{h_n(\omega)\}$  converges uniformly for  $\omega \in \Omega_p' = \Omega = \Omega_p$ ,  $p=1, 2, \cdots$ , and  $\bigcap_{p=1}^\infty \Omega_p = \emptyset$ . Obviously for every p there

exists an integer  $n_p$  (and we can assume that  $n_1 < n_2 < \cdots < n_p < \cdots$ ) for which  $\left| S(h_{n_p} \chi_{\Omega'_p})^* * x_0^* \right| < \epsilon/2$ . Thus

$$\left| S(h_{1}\chi_{\Omega_{p}})^{*}x_{0}^{*} \right| \geq \left| S(h_{n_{p}}\chi_{\Omega_{p}})^{*}x_{0}^{*} \right| \geq \left| S(h_{n_{p}})^{*}x_{0}^{*} \right| - \left| S(h_{n_{p}}\chi_{\Omega'_{p}})^{*}x_{0}^{*} \right|$$

$$\geq \epsilon - \epsilon/2 = \epsilon/2, \qquad p = 1, 2, \cdots$$

Therefore we can find vectors  $x_p = S(g_p)x_0 \in \mathfrak{X}^{(r)}$  with  $|S(g_p)x_0| = 1$  and such that

$$[S(h_1)^* x_0^*][S(g_p \chi_{\Omega_p}) x_0] \ge \epsilon/4, \qquad p = 1, 2, \cdots.$$

Consequently  $[S(h_1)^*x_0^*][S(|g_p|\chi_{\Omega_p})x_0] \ge \epsilon/4, p=1, 2, \cdots$ 

Since in general the functions  $|g_p| \chi_{\Omega_p}$  have no disjoint supports one can find an increasing sequence of integers  $\{p_s\}$  such that the functions  $\phi_s = |g_{p_s}| \chi_{\Omega_{p_s} - \Omega_{p_{s+1}}}$ ;  $s = 1, 2, \cdots$ , have disjoint supports and

$$[S(h_1)^* x_0^*][S(\phi_s)x_0] \ge \epsilon/8;$$
  $s = 1, 2, \cdots.$ 

Hence, for any sequence  $(\alpha_s) \in l_1$  we obtain

$$| S(h_{1})^{*}x_{0}^{*} | \sum_{s=1}^{\infty} | \alpha_{s} | \geq | S(h_{1})^{*}x_{0}^{*} | | \sum_{s=1}^{\infty} \alpha_{s}S(\phi_{s})x_{0} |$$

$$\geq | S(h_{1})^{*}x_{0}^{*} | | S(\sum_{s=1}^{\infty} \alpha_{s}\phi_{s})x_{0} |$$

$$= | S(h_{1})^{*}x_{0}^{*} | | S(\sum_{s=1}^{\infty} | \alpha_{s} | \phi_{s})x_{0} |$$

$$\geq [ S(h_{1})^{*}x_{0}^{*} | [ S(\sum_{s=1}^{\infty} | \alpha_{s} | \phi_{s})x_{0} ]$$

$$= \sum_{s=1}^{\infty} | \alpha_{s} | [ S(h_{1})^{*}x_{0}^{*} ] [ S(\phi_{s})x_{0} ] \geq \frac{\epsilon}{8} \sum_{s=1}^{\infty} | \alpha_{s} |,$$

i.e.,  $l_1$  is isomorphic to the subspace  $clm\{S(\phi_s)x_0; s=1, 2, \cdots\}$ , which is a contradiction. Q.E.D.

THEOREM 5. The cyclic space  $\mathfrak{X} = \mathfrak{M}(x_0)$  is reflexive if and only if no subspace of it is isomorphic to either  $l_1$  or  $c_0$ .

PROOF. Since every subspace of a reflexive space is also reflexive no subspace of  $\mathfrak{X}$  can be isomorphic to  $l_1$  or  $c_0$  provided  $\mathfrak{X}$  is reflexive. To prove the converse notice first that it suffices to show that  $\mathfrak{X}^{(r)}$  is reflexive. For this purpose we shall use Theorem A. Indeed, condition (a) of this theorem holds in view of a theorem of H. Nakano [11, pp.

321–322] (see also W. A. J. Luxemburg and A. C. Zaanen [8, Note X, Theorem 33.4]), the Lebesgue Dominated Convergence Theorem for vector measures and the fact that  $\mathfrak{X}^{(r)}$  is  $\sigma$ -Dedekind complete. Condition (b) follows from W. A. J. Luxemburg and A. C. Zaanen [8, Note X, Theorem 33.8], (used for  $(\mathfrak{X}^{(r)})^*$ ), again the Lebesgue Dominated Convergence Theorem, and Lemma 4 provided no subspace of  $\mathfrak{X}^{(r)}$  is isomorphic to  $l_1$ . Finally, if no subspace of  $\mathfrak{X}^{(r)}$  is isomorphic to  $c_0$ , Lemma 3 and W. A. J. Luxemburg and A. C. Zaanen [8, Note XI, Theorem 34.2] imply that condition (c) is also satisfied. This completes the proof.

COROLLARY 6. If  $\mathfrak{X}^{**}$  is separable then  $\mathfrak{X}$  is reflexive.

PROOF. If  $\mathfrak{X}$  has a subspace isomorphic to either  $c_0$  or  $l_1$  then  $\mathfrak{X}^{**}$  cannot be separable since  $(c_0)^{**} = m$  and  $l_1^* = m$  (m denotes the space of all bounded sequences) and m is not separable.

REMARKS. 1. This corollary can be proved directly by using Lemma 2 and another result of T. Ogasawara [12, Chapter V; §4, Theorem 3] (see also W. A. J. Luxemburg [9, Theorem 45.1]).

- 2. Corollary 6 is not true for an arbitrary Banach space (cf. R. C. James [5]).
- 3. In connection with the proof of Lemma 4, one can observe that if  $e_{\bullet}$  denotes the support of  $\phi_{\bullet}$  then

$$PS(f)x_0 = \sum_{s=1}^{\infty} \frac{[S(h_1)^* x_0^*][S(f\chi_{es})x_0]}{[S(h_1)^* x_0^*][S(\phi_1)x_0]} S(\phi_s)x_0$$

is a bounded projection (with norm  $\leq (8/\epsilon) |S(h_1) * x_0^*|$ ) onto the subspace clm  $\{S(\phi_s)x_0; s=1,2,\cdots\}$  which is isomorphic to  $l_1$ . Similar arguments show that in Lemma 3 the subspace clm  $\{S(\phi_n)x_0; n=1,2,\cdots\}$  (which is isomorphic to  $c_0$ ) is also the range of a projection with norm  $\leq (K+|x_0|)/\epsilon$ .

## REFERENCES

- 1. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-359.
- 2. ——, A multiplicity theory for Boolean algebras of projections in Banach spaces, Trans. Amer. Math. Soc. 92 (1959), 508-530.
  - 3. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
  - 4. N. Dunford and J. Schwartz, Linear operators. I, Interscience, New York, 1958.
- 5. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
- 6. J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Functional Analysis 3 (1969), 115-125.

- 7. ——, Banach spaces with sufficiently many Boolean algebras of projections, J. Math. Anal. Appl. 25 (1969), 309-320.
- 8. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach functions spaces. VI, VII, Nederl. Akad. Wetensch. Proc. Ser. A 66 (1963), 665-668, 669-681; X, XI, XIII, ibid. 67 (1964), 495-506, 507-518, 530-543.
- 9. W. A. J. Luxemburg, Notes on Banach function spaces, XIVA, Nederl. Akad. Wetensch. Proc. Ser. A 68 (1965), 229-239.
- 10. C. A. McCarthy and L. Tzafriri, Projections in L₁ and L∞ spaces, Pacific J. Math. 26 (1968), 529-546.
- 11. H. Nakano, Semi-ordered linear spaces, Japan Soc. for Promotion of Science, Tokyo, 1955.
  - 12. T. Ogasawara, Vector lattices, Tokyo, 1948. (Japanese)
- 13. A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- 14. L. Tzafriri, A characterization of  $L_p$  and  $c_0$ -spaces, Studia Math. 32 (1969), (to appear).

University of Minnesota