
APPROXIMATION OF REAL CONTINUOUS FUNCTIONS
ON LINDELÖF SPACES1

ANTHONY W. HAGER2

Throughout, topological spaces are assumed to be completely

regular and Hausdorff. C(X) is the set (or ring) of real-valued con-

tinuous functions on the space X; C*(X) is the subset (or subring) of

bounded functions. The subset B of C(X) is said to separate points

and closed sets of X if given a closed set F and a point x(£F, there is

fEB with f(x)Ec\(f(F))■
We state the principal result.

1.4 Theorem. Let X be a space with the Lindelöf property, and A a

subring of C*(X) containing the rational constants and separating

points and closed sets of X. Then, each function in C(X) is the point-

wise limit of a sequence from A; if A is also a lattice, then each non-

negative function in C(X) is the pointwise limit of an increasing se-

quence from A.

The conclusion of 1.4 asserts that A is "sequentially dense" in

CP(X) (= C(X) with the topology of pointwise convergence). When A

is a lattice, the conclusion can be combined with Dini's Theorem to

obtain sequential density in CC(X) ( = C(X) with the compact-open

topology). This allows the following estimate of the "sequential den-

sity character" of, e.g., CC(X), for infinite Lindelöf X: it does not

exceed the weight of X; it follows that the cardinal of C(X) does not

exceed (weight X)No, and with a result of Kruse, equality holds.

1. The main results. The method of proof of 1.4 can be used to

obtain some similar theorems (§2), so we proceed somewhat more

generally.

Suppose that X is an arbitrary space, and that A is a subring of

C*(X) which contains the rational constants and separates points

and closed sets in X. Let Ai be the smallest subring of C(X) which

contains A and is closed under uniform convergence and inversion

of functions without zeros.

Presented to the Society, April 5, 1969 under the title Approximation of continuous

functions on Lindelöf spaces; received by the editors September 6, 1968.

1 Research partially supported by the National Science Foundation under grant

GP-7455, at the University of Rochester.
1 I am pleased to thank Arthur Stone for several valuable conversations, W. W.

Comfort for several valuable conversations and for the examples 3.4(i) and 3.4(ii),

and Frank Anderson for pointing out an error in an earlier version of this paper.

156



FUNCTIONS ON LINDELÖF SPACES 157

1.1 Proposition. Each function in Ai is the pointwise limit of a

sequence from A; if A is a lattice, then each nonnegative function in Ai

is the pointwise limit of an increasing sequence from A.

Proof. A description of Ai is needed. For BCC(X), let ul B de-

note the collection of Uniform Limits of sequences from B. Then

Ai = \i\\f/g:f, g£ul A and g has no zeros} [H, 2.1 and 3.1]. (In the
results in [H], the ring of functions extendable over a certain com-

pactification of X replaces ul A. That ul A is one of these can be seen

by embedding X into a cube whose factors are indexed by A [Ki, p.

116]. An application of the Weierstrass-Stone Theorem [Ki, p. 244]

establishes that ul A is exactly the set of functions extendable over

the closure of X in the cube.) The computations below will yield 1.1.

We shall need to know that ul A is a lattice, a ring, contains all real

constants, and if /£ul A with/ = a>0, then l//£ul A. These are

easily proved, with the possible exception of the first; for this, see

[GJ, 16.2].
We first show that the assertions of 1.1 hold for the functions f/g

in the description of ^4i.

Consider g£ul A with g(x)>0 for each x£X. With gn =

max \g, 1/»}, (gn) decreases and converges uniformly to g. Now,

l/gn£ul A, so there is a sequence (g[n)) from A which converges uni-

formly to \/gn. We arrange it so that \/g»(x) - l/2k^g[n)(x) g í/gn(x)

— í/2k+1 (for all xEX); it follows that (g^n>) increases and converges

pointwise to 1/g.

Now consider an f/g. We assume g(x)>0 for all x (by replacing

g by g2 and/ by fg, if necessary), and choose (g£n)) as in the preceding

paragraph. Let (/„) be a sequence from A converging uniformly to/.

Then (fngnn)) converges pointwise to f/g.

If A is a lattice and//g^0, we assume that/ = 0 and that g(x)>0

for all x (by replacing/ by |/| and g by [ g\, if necessary). Pick (g¡jn))

as before. Let (/„) be a sequence from A which increases and con-

verges uniformly to/; we assume each/„|_0 (by replacing/„ by/nV0,

if necessary). Then (/„gi?') increases and converges uniformly to f/g.

Observe that in each of the two preceding paragraphs, if |//g| 'è.M,

then upon choosing (/„) so that \f» —f\ úM-(\/n), and noticing that

\é»\ un, we have

l/ngn"   |    Ú   \fngn      ~fg»     \    +   \ fg»'   \

=   l/n-/|"Unn)|    +   \f/g\    Ú2M.

Now let hE-A-i, so that h is the uniform limit of a sequence (A„)



158 A. W. HAGER [July

oíf/g's and in such a way that for «>1 each function un = hn — hn-i

is bounded, say \un\ úMn, with ^7kf„<a>. Each un is an f/g, and

hence the pointwise limit of a sequence («t0) from A ; by the preced-

each   k). With  <pn = un2)ing paragraph, we take 41 ^2ikfn (for

+ • • ■ -\-u„ , qbnEA. We show below that (<pn) converges pointwise

to h — hi. Knowing this, we take a sequence (h„^) from A which con-

verges pointwise to hi, and (<pn+hnl)) is a sequence from A converg-

ing pointwise to h.

The modifications necessary to get an increasing sequence, in case

A is a lattice and h^O, are as follows. Take (hn) increasing, and &i^0.

(The first is always possible, and the second is possible whenever

h^O, because ^4i is always a lattice. These are easy to show.) Thus

each m„3ï0, and we may and do take each «["' SïO and (u[n)) increas-

ing; this makes (<pn) increase. Upon taking (h^) increasing, the se-

quence ("pn+h^) increases.

Finally, let e>0 be given. Choose m with ^n>m 2MH<e/S. Let

xGX, and r>m. Then

(h(x) — hi(x)) — <j>r(x) | = Yj Un(x)  — (pr(x)
n-2

+

in),

]C      Ur     (X)
n=m-f 1

Yj (Un(x)  — Ur     (x))
:2

00

+   23 u"(x)

For large enough r (depending on x) the first term is <e/3; for any r,

the second and third terms are each <e/3. Thus <£r(x)—>(A(x) — Äi(x)).

(This argument is based on one in [N, p. 132].)

The proof of 1.1 is complete.

At this point, the proof of the approximation theorem for Lindelöf

spaces can be completed with a reference: if X is Lindelöf, then (for

any Ai as in 1.1) ^4i=C(X), by a result due to M. Henriksen and

D. G. Johnson [HJ, 5.4], in an algebraic setting, and later and inde-

pendently to S. G. Mrówka [M2, 4.6]. As is made clear in both papers,

the question of equality of ^4i and C(X) involves the "zero-sets"; we

discuss this in a little more detail.

The zero-set of the function/ is the set Z(f) = {x:/(x) =0 J. It was

first noticed by Isbell [I, 1.31(c)] that ^4i = C(X) if the zero-sets of

the functions in C(X) and in yli coincide. (Proofs appear in [HJ,

5.2], [M2, 4.4] and [H, 3.9].) From the description of ^4i quoted

in the proof of 1.1, it follows easily that the zero-sets of functions

from Ai, and from ul A, coincide. (And, if ^4 is a lattice, and /Gul A,
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then there are /i, /2, • • • £^4 with Z(f) =flZ(/n).) Thus, with nota-
tion as in 1.1

1.2 Ax = C(X) if (and only if) the zero-sets of functions in C(X) are

zero-sets of functions in ul A.

For Lindelöf spaces, the following explains why Ai = C(X).

1.3 Proposition (Jerison, [HJ, 5.3]). Let X be a Lindelöf space,
and BCC*(X) a ring containing constants, separating points and

closed sets, and closed under uniform convergence. Then the zero-sets

of functions in C(X) are zero-sets of functions in B.

Proof. (Included because [HJ, 5.3] is stated somewhat differently.)

LetfEC(X). For each x(£Z(f), choose fxEB with Og/Igl,/I(ï)>0,

and fx(Z(f)) = {o}. Since X is Lindelöf, so is X — Z(f) (being an Fc),

and there are xi, x2, • • • with X — Z(f) = U(X — Z(fXi)) =

X — Z(^2~ifXi). The series converges uniformly, so ^J2~isXiEB.

Theorem 1.4 follows immediately from 1.1, 1.2, and 1.3.

1.5 Examples, (i) In 1.4, the hypothesis that X have the Lindelöf

property is not superfluous. Let X be the real line with the discrete

topology, and A the ring of bounded Baire functions on the real

line [N, Chapter XV]. The pointwise limit of a sequence from A is

again a Baire function; since there are only c Baire functions, not

every function in C(X) is the pointwise limit of a sequence from A.

(ii) In 1.4, the hypothesis that A separates points and closed sets

cannot be replaced by the hypothesis that A separates points (though the

latter suffices that A be dense in CP(X)). We shall exhibit a pair of

spaces (X, Y) such that X has the Lindelöf property, F is a P-space

(i.e., Gs's are open), and there is a continuous one-to-one map <f> of

X onto F which is not a homeomorphism. Given such a pair, let

A = \fo4>:fEC*(Y)}. Clearly, A is a subring of C*(X) which sepa-
rates points but not points and closed sets. Each pointwise limit of

a sequence from A lies in {/ o 4> :/£ C( Y)} (which is not all of C(X)).

For, if (h„) is a sequence from A converging pointwise on X to

hEC(X), then hn=fn o<f>, and (/„) converges pointwise on F to some

function/. Because F is a P-space, fEC(Y), and h=f ofy follows

easily.

Such a pair of spaces is constructed as follows. Let Di and D2 be

disjoint uncountable sets, pi and p2 two different objects with piEDi.

Let F be the disjoint union of the spaces 2?AJ {/>,■}, where each

point of Di is isolated, and each neighborhood of pi has countable

complement in Di. Let X be the space Di<JD2\J {pi, p2} with to-
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pology : each point of DiVJD2\J {pi} is isolated, and each neighborhood

of pi has countable complement. The map <p is the identity.

2. We note two easy applications of the results of §1.

2.1 Theorem. Let M be a metrizable space, and X an arbitrary

subspace of M. Then, each nonnegative function in C(X) is the point-

wise limit of an increasing sequence of functions with continuous exten-

sion over M.

Proof. Let A be the collection of functions in C(X) with continu-

ous extension over M. Then ^4=ul A, and is a lattice. Because M

and X are metrizable, a zero-set of X is just a closed set in X, which

extends to a closed set of M, which is a zero-set of M. 1.2 and 1.1

now apply.

Now, let X= IIxeA Xx be the topological product of spaces Xx;

the index set A is arbitrary. By a "countable subproduct of X" is

meant a space of the form Hxe a0 Xx, where A0 is a countable subset

of A. Let ®xsa C*(Xx) be the subring of C*(X) generated by the

functions of one variable, i.e., by the functions of the form/ollx,

where IIx is the projection of X onto Xx, and/GC*(Xx).

2.2 Theorem. If each countable subproduct of X = Hxs a Xx has the

Lindelöf property, then each function in C(X) is the pointwise limit

of a sequence from ®xeA C*(X\).

Proof. Let fEC(X). By [E, Theorem l], there is a countable

subproduct X0= H>eA0 X\ and gGC(X0) with/ = g olio, where n0

denotes projection onto X0. Applying 1.4 on the space X0, g is the

pointwise limit of a sequence (gn) from ®x¡ea0 C*(X\). Clearly,

gn oIIoG<8>xeA C*(Xx), and (g„oll0) converges pointwise to/.

2.3 Remarks, (i) We comment on when the hypothesis to 2.2

holds, i.e., when the product of a countable family of spaces {Xn}

has the Lindelöf property. It does when each X„ has a countable

base, of course. By applying [HIJ, 2.3], it can be shown that JJXn

is Lindelöf if each X„ is either tr-compact or Lindelöf and complete

in the sense of Cech (i.e., a G¡ in ßX). The latter is in [E, p. 223]; the

above "proof" seems more direct. I am not aware of the result for

(r-compact spaces in the literature; it was known previously to A. H.

Stone.

(ii) In [R], Rubin has obtained a conclusion similar to that of

2.2 under the much stronger hypothesis that X be c-compact and

locally compact. The conclusions of the results differ in that Rubin

shows that if the function to be approximated is nonnegative, then
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the approximating sequence can be chosen so that each f oH\ which

appears in each term of the sequence is nonnegative also. Aside from

this latter twist, Rubin's Theorem is almost immediate from the

Stone-Weierstrass Theorem for uniform convergence on compacta

[K, p. 244] (and this proof requires only <r-compactness).

(iii) A good question is whether the conclusion to Theorem 2 holds

under the hypothesis that each finite subproduct of X has the Lindelöf

property. (The Engelking factorization theorem used in the proof is

valid in this case.) It would seem difficult to find a counterexample.

To my knowledge, there is just one example known of a countable

family of spaces, whose product is not Lindelöf, but each of whose

finite subproducts is. The example is due to E. Michael, and uses the

continuum hypothesis. (Footnote 4 of [Mi], replacing the irrationals

by the homeomorphic product of countably many countable discrete

spaces.) However, for X this product, the conclusion to 2.2 holds.

(This is not obvious.)

3. Sequential density character of CC(X). We shall use 1.4 to esti-

mate the least cardinal number of a sequentially dense subset of

CC(X) (i.e., a subset such that for each function/ in C(X) there is a

sequence from the subset converging to / in the compact-open

topology). We call this number the sequential density character of

CC(X) and denote it s5Cc(X). (Remarks similar to those below apply

to "s8Cp(X)". This does not exceed s5Cc(X), by [Kx, p. 222]. We

shall say no more about it.)

In the space CC(X), convergence is uniform convergence on com-

pact sets [Ki, p. 230]. Dini's Theorem [Ki, p. 239] asserts that on a

compact set, a pointwise convergent increasing sequence with con-

tinuous limit converges uniformly.

3.1 Proposition. Under the hypotheses of 1.4, if A is a lattice, then

A is sequentially dense in CC(X).

Proof. Let/£C(X). Write/=/V0-(-/)V0 =/+-/-. By 1.4 and
the remarks above, there are sequences (g„) and (hn) from A, with

(g„) converging to /+, and (hn) converging to /~, uniformly on

compact sets. Then, (gn — hn) converges to /, uniformly on com-

pact sets, hence in CC(X).

The weight of a space is the least cardinal number of an open base.

3.2 Theorem. For infinite Lindelöf X, sôCc(X) ̂ weight X.

Proof. Let X be infinite and Lindelöf, and let (B be a base with

card (B = weight X. Assume Z£(B. To each pair (U, V) with U, F£(B
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and UCV, assign a function fty.v)EC(X) with Oúfyjy)^, f(U)

= {l} and/(X-F)={0}. (X is normal [Ku p. 113], so such a

function exists by Urysohn's Lemma.) Let A be the smallest subset

of C*(X) which is a ring and lattice, and contains all rational mul-

tiples of the/(i/,F)'s. It is easy to map the set of all finite subsets of

these rational multiples onto A, so that card A= card {f«j,v)} =

card (B. A is sequentially dense in CC(X), by 3.1, and söCc(X)^

weight X follows.

3.3 Theorem. If X is Lindelöf, and has at least two points, then

card C(X) = (weight X)*».

Proof. For finite X, both numbers are c. Otherwise, by 3.2, choose

A sequentially dense in CC(X) with card A ^weight X. The num-

ber of functions in C(X) cannot exceed the number of sequences

from A, i.e., card C(X) g (card A)*°, and card C(X)â (weight X)Ko

follows. To show the opposite inequality, we consider ßX, the Stone-

Cech compactification of X [Gj]. Clearly, card C(X)=card C*(X)

= card CißX), and weight X^ weight ßX. We show that if Y is any

compact space, then (weight F)Kogcard CiY). If A is sequentially

dense in CdY) (i.e., dense in the topology of uniform convergence),

then the sets of the form {yEY:a<f(y)<b}, where fEA and a, b
are rational, form an open base for Y. That is, weight Y^s8Cc(Y)

(for compact Y; compare 3.4(h), below). Equipping C(Y) with the

supremum norm, we have a Banach space, and s8Cc(Y) is what is

called ind C(Y) in [K2, Lemma 2]; this result asserts that (s5Cc(F))no

= card C(Y).

3.4 Examples, (i) In 3.2 and 3.3, the hypothesis that X have the

Lindelöf property cannot be omitted. With X the discrete reals,

weight X = c (so (weight X)«o = cSo = c) and card C(X)=2<\ If A is

sequentially dense in CC(X), then 2c^(card A)xo; this precludes

card A fgc.

(ii) There is a Lindelöf space X with s5Cc(X)<weight X. Choose

q E ßN — N (N is countable discrete) and let X = N W {q}.

Weight X>No [GJ, 4M.2], while it is easy to see that sôCc(X) =N0.

(In fact, CC(X) is metrizable and separable [W, p. 271 ].)

(iii) For X countable discrete, söCc(X) = weight X.

Finally, by the method of 3.2 and 2.2, we can estimate sdCc(X) for

certain products X. We omit the proof.

3.5 Theorem. Let X= IJxga Xx have each countable subproduct

Lindelöf. Then söCc(X)^(card A)- 23{^CC(XX): XGA} g(card A)
• £{ weight Xx: AGA}.
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Added in Proof: The inequality card C(X) = (weight X)b° (for

X Lindelöf with at least two points), which is that part of 3.3 which

uses the methods of this paper, can be given an easy direct proof by

mapping C(X) one-to-one into the set of sequences of countable

covers of X with members from a base of cardinal weight X.

Incidentally, from 3.3 it follows that for X Lindelöf, (Weight X)üo

= (weight ßX)üa. Example 3.4 (i) shows that this equality can fail

when X is not Lindelöf.
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