COMPACT MEANS IN THE PLANE
PHILIP BACON

1. Results. An n-mean (n=2) is a nonvoid Hausdorff space X
together with a continuous symmetric idempotent function (which is
also called an #-mean) from X" into X. A space on which an #-mean
can be defined is called an m,-space [2, p. 210]. In the present note
we show that a compact m,-space embedded in the cartesian plane
R? does not separate R? and, as a partial converse, that any compact
locally connected subset of R? that does not separate R? is an m,-
space.

These two theorems reduce the problem of characterizing compact
ma-spaces in R? to the question: When is a nonvoid compact non-
locally connected subset of R? with connected complement an m,-
space? The question is not answered here, but the answer cannot be
either “always” or “never,” for, on the one hand, there is a compact
subset of R? with connected complement that is not an my-space [3]
and, on the other hand, a semilattice described in [1, p. 185, Example
1]is a 2-mean on a compact connected subset of R? that is not locally
connected.

2. Proofs. Our lemmas concern Cech homology theory on the
category of compact pairs. We establish our notation with the follow-
ing remarks.

Suppose G is an abelian group, X is a finite complex and 4 is a
subcomplex of X. The G-valued n-chains of the oriented n-simplexes
of X that assume the value 0 on the oriented n-simplexes of 4 form,
under functional addition, an abelian group which will be denoted by
C.(X, 4; G). The boundary operator 9 is defined in the usual manner
[7, p. 111] and

Z.(X, 4; G) is the kernel of 3: C,(X, 4; G)—C,1(X, 4; G);

B.(X, 4; G) is the image of 3: C, (X, 4; G)—C.(X, 4; G); and

H,(X, 4;G)=Z.(X, 4; G)/B.(X, 4; G).

For each integer #, a simplicial map f: (X, 4)—(Y, B) induces a
homomorphism C,(f): C.(X, 4; G)—C.(Y, B; G) which in turn in-
duces a homomorphism H,(f): H.(X, 4; G)—H.(Y, B;G). If X is a
compact Hausdorff space, Cov(X) is the set of all finite open covers
of X. If K isin Cov(X), Xk is the nerve of K. If (X, 4) is a compact
pair (that is, X is compact and Hausdorff and 4 is a closed subset
of X), if K, JECov(X) and if J refines K, there is a unique projec-
tion
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T(Ky J) Hn(XJ; AJ; G) - n(XKy AK;G)'

The inverse limit group defined by all such projections is the nth
Cech homology group for (X, A) with coefficients in G and is denoted
by H.(X, 4; G). If his in H,(X, 4; G) and if K is in Cov(X), the
Kth coordinate of h is hg. A continuous map f: (X, 4)—(Y, B) be-
tween compact pairs induces a homomorphism fx: H,(X, 4; G)
—H,(Y, B;G).

(2.1) Suppose X is a connected compact Hausdorff space, pEX and
n is an integer =2. Let maps d*, f~: XX (E {1, SN n}) be de-
fined by the formulas

(d"x); = x;
(frix)e ==, =74,
=p iF#]
xEX,i€{1, - - -, n}. If G is an abelian group and AEH,(X ; G), then

*h= 33 fYh.

Proor. We first consider the case n=2. Suppose E€Cov(X?).
Since X is compact, there is a J in Cov(X) such that

K={UXV:UVe&J}
refines E. Let P be a member of J that contains p. Define simplicial
maps

F?' F2 D% X; — (X%)g
by the rules F21U=UXP, F2U=PX U and D2U=UXU for all U

in J. Observe that f22UC F2'U, f22UC F?*U and d*UCD?U whenever
U is in J. Suppose gEG, m=3 and z in Z;(X,; G) is such that

(1) z2=9g Z V.'_lV.‘,

=1

where Vo=V,=P and V.1V, whenever ie{l, - e, m} Define
wE G((X%x; G) by

w = g[ T3 (Ve X V) (Vir X V) (Vs X Vi)

i=1 j=1

+ ”i: i Vi X V(Vigr X Vi) (Vi X V,q.l):l.

=2 j=1

Then direct computation shows that
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@) C1(F)(2) + C1(F?)(2) — C1(D?)(2) = ow.

Since X; is connected, every cycle in Z;(X;; G) is a finite sum of
cycles of form (1). Hence for any z in Zi(X;; G) there is a w in
C:((X?)k; G) such that (2) holds. It follows immediately that, if
h€EH\(Xs; G),

H\(F*")(h) + H\(F**)(h) — H:\(D*) (k) = 0.
Now suppose hEH,(X; G). Then

(fe h+fe h—dah) g =7 (E, K)[(fv h)x+(fe h)x— (dsh)x]
= n(E, K)[H:(F*) (hs)+ Hy(F?) (h;) — Hy(D?) (h,)]
= (E, K)(0) = 0,

which completes the proof for the case n=2.

The proof for n>2 proceeds by an induction on #. Let h be in
H(X; G) and define maps k: X"—X"t! and g: X?*—>X"+! by the
formulas

k(xh tte )xn) = (xly c oty Xy xﬂ);

g(xb x2) = (P, R 2528 x2)-

Using the case n=2 we have (kf"")+h = (gd?)s+h = (gf*')+h+ (gf**)+h
=it a4t p, Usmg this and the inductive hypothesis we have
a5 h=(kd")xh = 257 (Rf*)xh+ (kf*)xh = 231 (kf))sh.

Throughout the remainder of this paper Z, denotes a cyclic group
of order .

(2.2) Suppose X is a compact connected Hausdorff space, pEX, n
is an integer =2 and m: X*—X is a continuous function such that if
xEX,

(1) m(x’ Xy, * 0y x)=x;

(2) m(x,p, -+ -, p)=m(p, %, p, - - - D)=+ =m(p, - -,p,%).
Then H\(X ; Z,) =0.

Proor. We suppose the hypotheses of (2.2) and define f*i, d»:
X—Xn"as in the hypothesis of (2.1). Observe that md" is the identity
on X and that, forJE{ . } mfri= f"l Let hbein Hy(X; Z,).
By (2.1), h=msdith= Z,_lm*f’“’h n(msf¥h) =0, the last equality
holding because the use of Z, as coefficient group insures that every
element of a Cech group is of order #.

(2.3) Suppose n=2, X is a compact subset of R™ and G is a nontrivial
abelian group for which H, 1(X; G)=0. If the Cech homology theory
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on compact pairs using G as coefficient group is exact, then R*—X is
connected.

PRrOOF. Suppose on the contrary R*—X has a bounded component
C. Let E be an n-ball with X\UC in its interior and its bounding
(n—1)-sphere denoted by S. Define T=E—C. Since T is a proper
subset of E and contains S, S is a retract of T. Accordingly the in-
clusion map k: SCT induces a monomorphism kx«: H,_,(S; G)—H,_;
(T'; G) and since H,_1(S; G) =G#0, H,1(T; G)#0. In the following
commutative diagram the dimension preserving homomorphisms are
induced by appropriate inclusion maps.

I}
H,1(X; G) = H,(X U C, X; G)

. L ox 1 s
J* 02
H, +(E; G) & H,i(T; G) — H.(E, T; G).

Since H,_1(X; G) =0, 821+ =v491=0. By [6, p. 266, Theorem 5.4], the
excision ux is an isomorphism. Hence 9, is a 0-homomorphism and, by
exactness, jx isa monomorphism. Since H,—1(T; G) #0, H,_1(E; G) #0,
which is false.

(2.4) If a compact subset X of R?is an m,-space, R?— X 1is connected.

ProOF. Suppose, on the contrary, that a compact subset X of R?
admits an #n-mean 7 and separates a point $ from a point ¢. R? is
locally connected and unicoherent [5, p. 73, Corollary 6]. By a
theorem of A. H. Stone [8, p. 429, Theorem 1] some component C of
X separates p from ¢. The restriction of m to C is an #-mean on C
[2, p. 212, Satz 4]. By (2.2) Hy(C, Z,) =0. The Cech homology theory
for compact pairs with Z, as coefficient group is exact [6, p. 248,
Theorem 7.6]. By (2.3), R2—C is connected, which is a contradiction.

(2.5) A nonvoid compact locally connected subset of R? that does not
separate R? is an m,-space.

ProorF. Suppose X is a nonvoid compact locally connected subset
of R? and R?—X is connected. Consider first the case in which X is
connected. The function m: (R?)"—R? defined by m(py, « -+, pa)
=(1/n) D", p: shows that R? is an m,-space. Since X is a retract
of R [4, p. 132, (13.1)] and any retract of an m,-space is an m,-space
[2, p. 212, Satz 3], X is an m,-space.

If X is not connected, X has at most finitely many components,
Gy, - - -, Gy each of which, by the above argument, is an m,-space.
For each ¢ in {1, - - -, k} let m;: C?—C; be an n-mean. Let p be a
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point of X. We define an n-mean m: X*—X by the rule
mq = my, iquC?, iE{l,---,k};

k
=p, ifgeEX —UC.
i=1

=
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