
COMPACT MEANS IN THE PLANE

PHILIP BACON

1. Results. An n-mean (n^2) is a nonvoid Hausdorff space X

together with a continuous symmetric idempotent function (which is

also called an M-mean) from X" into X. A space on which an ra-mean

can be defined is called an m„-space [2, p. 210]. In the present note

we show that a compact mn-space embedded in the cartesian plane

R2 does not separate R2 and, as a partial converse, that any compact

locally connected subset of R2 that does not separate R2 is an mn-

space.

These two theorems reduce the problem of characterizing compact

win-spaces in R2 to the question: When is a nonvoid compact non-

locally connected subset of R2 with connected complement an mn-

space? The question is not answered here, but the answer cannot be

either "always" or "never," for, on the one hand, there is a compact

subset of R2 with connected complement that is not an m2-space [3]

and, on the other hand, a semilattice described in [l, p. 185, Example

1 ] is a 2-mean on a compact connected subset of R2 that is not locally

connected.

2. Proofs. Our lemmas concern Cech homology theory on the

category of compact pairs. We establish our notation with the follow-

ing remarks.

Suppose G is an abelian group, X is a finite complex and A is a

subcomplex of X. The G-valued «-chains of the oriented w-simplexes

of X that assume the value 0 on the oriented w-simplexes of A form,

under functional addition, an abelian group which will be denoted by

Cn(X, A ; G). The boundary operator d is defined in the usual manner

[7, p. Ill] and

Zn(X, A;G)is the kernel of d: Cn(X, A ; G)-+Cn-i(X, A;G);
Bn(X, A;G)is the image of d : Cn+i(X, A ; G)->Cn(X, A;G); and

Hn(X, A ; G) =Z„(X, A ; G)/Bn(X, A ; G).
For each integer n, a simplicial map/: (X, A)—>(Y, B) induces a

homomorphism Cn(f): Cn(X, A; G)^>Cn(Y, B; G) which in turn in-

duces a homomorphism Hn(f): Hn(X, A; G)—>Ü„(F, B; G). If X is a

compact Hausdorff space, Cov(X) is the set of all finite open covers

of X. If if is in Cov(X), Xk is the nerve of if. If (X, A) is a compact

pair (that is, X is compact and Hausdorff and A is a closed subset

of X), if if, JECov(X) and if / refines if, there is a unique projec-

tion
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ir(K, J) : Hn(Xj, Aj;G)-+ Hn(XK, AK;G).

The inverse limit group defined by all such projections is the Mth

Cech homology group for (X, A) with coefficients in G and is denoted

by Hn(X, A; G). If h is in Hn(X, A; G) and if K is in Cov(Z), the
Tith coordinate of h is hK. A continuous map/: (X, A)—>(F, B) be-

tween compact pairs induces a homomorphism /*: Hn(X, A; G)

->Hn(Y,B;G).

(2.1) Suppose X is a connected compact Hausdorff space, pEX and

n is an integer ^2. Let maps d",fni: X—>Xn (JE {l, •• -, n}) be de-

fined by the formulas

idnx)i = x;

(/"%),• = x,       i= j,

= P,       i *j\

xEX,iE{l, ■ ■ • , n}. If G is an abelian group and hEHiiX ; G), then

d%h= ZUfth.

Proof. We first consider the case w = 2. Suppose 7iGCov(A2).

Since X is compact, there is a 7 in Cov(X) such that

K = {UX V: U, VEJ}

refines E. Let P be a member of 7 that contains p. Define simplicial

maps

Fn, F22, D2:Xj-*(X2)K

by the rules F21Z7 = UXP, F22U = PXU and D2U= UX U for all U

in 7. Observe that/21 UCF21U,f22UCF22Uand d2UCD2U whenever

Î/ is in J. Suppose gEG, m}t3 and z in Zi(Av; G) is such that

m

(1) 2 = ¿Z F,_iFÉ,
•=i

where Fo= Fm = P and F,_i5^F¿ whenever iE {l, ■ ■ • , wz}. Define

wEd((X2)K; G) by

w = g\ZZ(ViX Vj)(Vi+i X Vj)(Vi+i X Vj+i)
L >=i y-i

+ Z Z (F,- X F,)(Fi+, X Fy+i)(F, X Fy+i)l.
t=2 J=l J

Then direct computation shows that
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(2) Ci(F2l)(z) + Ci(F22)(z) - Ci(D2)(z) = dw.

Since Xj is connected, every cycle in Zi(Xj; G) is a finite sum of

cycles of form (1). Hence for any z in Zi(Xj; G) there is a w in

C2((X2)K; G) such that (2) holds. It follows immediately that, if

hEHi(Xj; G),

Hi(F2l)(h) + Hi(F22)(h) - Hi(D2)(h) = 0.

Now suppose hEHi(X; G). Then

21 29 2 21 22 2

(/*h+f*h-d*h)E = w(E, K)[(Uh)K+(f*h)K-(d*h)K\

= 7r(E,K)[Hi(F2i)(hj) + Hi(F22)(hj)-Hi(D2)(hj)}

= t(E,K)(0) =0,

which completes the proof for the case w = 2.

The proof for w>2 proceeds by an induction on ». Let h be in

Hi(X; G) and define maps k: X"-+Xn+1 and g: X2^Xn+l by the

formulas

RyXij • * * , xn) = \Xi, ' ' ' ) Xn, x„J ;

g(xh x2) = (p, • ■ ■ ,p, Xi, x2).

Using the case « = 2 we have (kfnn)*h = (gd2)*h = (gf21)*h+(gf22)*h

=f¥~hnh+fl+1'n+1h. Using this and the inductive hypothesis we have

dl+1h=(kd»)*h= J^=¡Wnf)*h + (kf-")*h= Y¿íl(Vní)*h-
Throughout the remainder of this paper Zn denotes a cyclic group

of order n.

(2.2) Suppose X is a compact connected Hausdorff space, pEX, n

is an integer â 2 and m : Xn^>X is a continuous function such that if

xEX,
(1) m(x, x, • • • , x)=x;

(2) m(x,p, • • ■ ,p)=m(p,x,p, ■ • • ,/>) = • • • =m(p, ■ ■ ■ ,p,x).

ThenHi(X;Zn)=0.

Proof. We suppose the hypotheses of (2.2) and define /"', dn:

X^>Xn as in the hypothesis of (2.1). Observe that mdn is the identity

onXand that, forj£ {2, • • • , «},mfni=mfn\ Lethbein Hi(X; Zn).

By (2.1), h = m*dlh= y¿;=-im*fl1h = n(m*fl1h) =0, the last equality
holding because the use of Zn as coefficient group insures that every

element of a Cech group is of order n.

(2.3) Suppose n\\2,X is a compact subset of Rn and G is a nontrivial

abelian group for which Hn-i(X; G)=0. If the Cech homology theory
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on compact pairs using G as coefficient group is exact, then R"—X is

connected.

Proof. Suppose on the contrary Rn — X has a bounded component

C. Let E be an w-ball with XKJC in its interior and its bounding

(w — 1)-sphere denoted by S. Define T = E — C. Since 7 is a proper

subset of E and contains S, S is a retract of T. Accordingly the in-

clusion map k: SET induces a monomorphism k*: Hn-i(S; G)—»7i„_i

(7; G) and since 77„_i(5; G)«G?¿0, 77„_i(7; G)t£0. In the following
commutative diagram the dimension preserving homomorphisms are

induced by appropriate inclusion maps.

77n_!(Z; G) ¿ HniX U C, X; G)

i A* 1 M*

Hn-iiE; G) £ 77n_i(7; G) ¿ 77„(£, 7; G).

Since Hn-i(X; G) =0, 32w*=fl*di = 0. By [6, p. 266, Theorem 5.4], the
excision w* is an isomorphism. Hence di is a 0-homomorphism and, by

exactness,/* is a monomorphism. Since Hn-i(T; G) ^0, Hn-i(E; G)t£0,

which is false.

(2.4) If a compact subset X of R2 is an mn-space, R2—X is connected.

Proof. Suppose, on the contrary, that a compact subset X of R2

admits an «-mean m and separates a point p from a point q. R2 is

locally connected and unicoherent [5, p. 73, Corollary 6]. By a

theorem of A. H. Stone [8, p. 429, Theorem l] some component C of

X separates p from q. The restriction of m to Cn is an «-mean on C

[2, p. 212, Satz 4]. By (2.2) 77i(C, Z„) =0. The Cech homology theory
for compact pairs with Zn as coefficient group is exact [6, p. 248,

Theorem 7.6]. By (2.3), R2 — C is connected, which is a contradiction.

(2.5) A nonvoid compact locally connected subset of R2 that does not

separate J?2 is an mn-space.

Proof. Suppose X is a nonvoid compact locally connected subset

of R2 and R2— X is connected. Consider first the case in which X is

connected. The function m: (R2)n—>R2 defined by m(pi, • ■ • , pn)

= (l/ra) Z"-i Pi shows that R2 is an w„-space. Since A" is a retract

of jR2 [4, p. 132, (13.1)] and any retract of an w„-space is an w„-space

[2, p. 212, Satz 3], X is an w„-space.

If X is not connected, X has at most finitely many components,

Ci, • • • , Ck, each of which, by the above argument, is an m„-space.

For each i in {l, • • • , k} let w,-: Cf—»C,- be an «-mean. Let p be a
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point of X. We define an w-mean m: Xn—>X by the rule

mq = rmq,    if q £ C¿,        i £ {l, • • • , k} ;

lb

= />,       if g £ XB - U C".
»-i
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