COMPACT MEANS IN THE PLANE

PHILIP BACON

1. Results. An n-mean $(n \ge 2)$ is a nonvoid Hausdorff space X together with a continuous symmetric idempotent function (which is also called an n-mean) from X^n into X. A space on which an n-mean can be defined is called an m_n -space [2, p. 210]. In the present note we show that a compact m_n -space embedded in the cartesian plane R^2 does not separate R^2 and, as a partial converse, that any compact locally connected subset of R^2 that does not separate R^2 is an m_n -space.

These two theorems reduce the problem of characterizing compact m_n -spaces in R^2 to the question: When is a nonvoid compact non-locally connected subset of R^2 with connected complement an m_n -space? The question is not answered here, but the answer cannot be either "always" or "never," for, on the one hand, there is a compact subset of R^2 with connected complement that is not an m_2 -space [3] and, on the other hand, a semilattice described in [1, p. 185, Example 1] is a 2-mean on a compact connected subset of R^2 that is not locally connected.

2. **Proofs.** Our lemmas concern Čech homology theory on the category of compact pairs. We establish our notation with the following remarks.

Suppose G is an abelian group, X is a finite complex and A is a subcomplex of X. The G-valued n-chains of the oriented n-simplexes of X that assume the value 0 on the oriented n-simplexes of A form, under functional addition, an abelian group which will be denoted by $C_n(X, A; G)$. The boundary operator ∂ is defined in the usual manner [7, p. 111] and

 $Z_n(X, A; G)$ is the kernel of $\partial: C_n(X, A; G) \rightarrow C_{n-1}(X, A; G)$; $B_n(X, A; G)$ is the image of $\partial: C_{n+1}(X, A; G) \rightarrow C_n(X, A; G)$; and $H_n(X, A; G) = Z_n(X, A; G)/B_n(X, A; G)$.

For each integer n, a simplicial map $f: (X, A) \rightarrow (Y, B)$ induces a homomorphism $C_n(f): C_n(X, A; G) \rightarrow C_n(Y, B; G)$ which in turn induces a homomorphism $H_n(f): H_n(X, A; G) \rightarrow H_n(Y, B; G)$. If X is a compact Hausdorff space, Cov(X) is the set of all finite open covers of X. If K is in Cov(X), X_K is the nerve of K. If (X, A) is a compact pair (that is, X is compact and Hausdorff and A is a closed subset of X), if K, $J \subset Cov(X)$ and if K refines K, there is a unique projection

$$\pi(K,J): H_n(X_J,A_J;G) \to H_n(X_K,A_K;G).$$

The inverse limit group defined by all such projections is the *n*th Čech homology group for (X, A) with coefficients in G and is denoted by $H_n(X, A; G)$. If h is in $H_n(X, A; G)$ and if K is in Cov(X), the Kth coordinate of h is h_K . A continuous map $f: (X, A) \rightarrow (Y, B)$ between compact pairs induces a homomorphism $f_*: H_n(X, A; G) \rightarrow H_n(Y, B; G)$.

(2.1) Suppose X is a connected compact Hausdorff space, $p \in X$ and n is an integer ≥ 2 . Let maps d^n , $f^{nj}: X \rightarrow X^n$ $(j \in \{1, \dots, n\})$ be defined by the formulas

$$(d^n x)_i = x;$$

$$(f^{nj} x)_i = x, i = j,$$

$$= p, i \neq j;$$

 $x \in X$, $i \in \{1, \dots, n\}$. If G is an abelian group and $h \in H_1(X; G)$, then $d_*^n h = \sum_{j=1}^n f_*^{nj} h$.

PROOF. We first consider the case n=2. Suppose $E \in Cov(X^2)$. Since X is compact, there is a J in Cov(X) such that

$$K = \{U \times V \colon U, V \in J\}$$

refines E. Let P be a member of J that contains p. Define simplicial maps

$$F^{21}, F^{22}, D^2: X_J \to (X^2)_K$$

by the rules $F^{21}U = U \times P$, $F^{22}U = P \times U$ and $D^2U = U \times U$ for all U in J. Observe that $f^{21}U \subset F^{21}U$, $f^{22}U \subset F^{22}U$ and $d^2U \subset D^2U$ whenever U is in J. Suppose $g \in G$, $m \ge 3$ and z in $Z_1(X_J; G)$ is such that

$$z = g \sum_{i=1}^{m} V_{i-1} V_{i},$$

where $V_0 = V_m = P$ and $V_{i-1} \neq V_i$ whenever $i \in \{1, \dots, m\}$. Define $w \in C_2((X^2)_K; G)$ by

$$w = g \left[\sum_{i=1}^{n-1} \sum_{j=1}^{i} (V_i \times V_j) (V_{i+1} \times V_j) (V_{i+1} \times V_{j+1}) + \sum_{i=2}^{n-1} \sum_{j=1}^{i-1} (V_i \times V_j) (V_{i+1} \times V_{j+1}) (V_i \times V_{j+1}) \right].$$

Then direct computation shows that

(2)
$$C_1(F^{21})(z) + C_1(F^{22})(z) - C_1(D^2)(z) = \partial w.$$

Since X_J is connected, every cycle in $Z_1(X_J; G)$ is a finite sum of cycles of form (1). Hence for any z in $Z_1(X_J; G)$ there is a w in $C_2((X^2)_K; G)$ such that (2) holds. It follows immediately that, if $h \in H_1(X_J; G)$,

$$H_1(F^{21})(h) + H_1(F^{22})(h) - H_1(D^2)(h) = 0.$$

Now suppose $h \in H_1(X; G)$. Then

$$(f_*^{21}\mathbf{h} + f_*^{22}\mathbf{h} - d_*^2\mathbf{h})_E = \pi(E, K) [(f_*^{21}\mathbf{h})_K + (f_*^{22}\mathbf{h})_K - (d_*^2\mathbf{h})_K]$$

$$= \pi(E, K) [H_1(F^{21})(\mathbf{h}_J) + H_1(F^{22})(\mathbf{h}_J) - H_1(D^2)(\mathbf{h}_J)]$$

$$= \pi(E, K)(0) = 0,$$

which completes the proof for the case n=2.

The proof for n>2 proceeds by an induction on n. Let h be in $H_1(X; G)$ and define maps $k: X^n \rightarrow X^{n+1}$ and $g: X^2 \rightarrow X^{n+1}$ by the formulas

$$k(x_1, \dots, x_n) = (x_1, \dots, x_n, x_n);$$

 $g(x_1, x_2) = (p, \dots, p, x_1, x_2).$

Using the case n=2 we have $(kf^{nn})_*h = (gd^2)_*h = (gf^{21})_*h + (gf^{22})_*h$ = $f_*^{n+1,n}h + f_*^{n+1,n+1}h$. Using this and the inductive hypothesis we have $d_*^{n+1}h = (kd^n)_*h = \sum_{j=1}^{n-1} (kf^{nj})_*h + (kf^{nn})_*h = \sum_{j=1}^{n+1} (kf^{nj})_*h$.

Throughout the remainder of this paper Z_n denotes a cyclic group of order n.

- (2.2) Suppose X is a compact connected Hausdorff space, $p \in X$, n is an integer ≥ 2 and $m: X^n \rightarrow X$ is a continuous function such that if $x \in X$,
 - $(1) \ m(x, x, \cdot \cdot \cdot , x) = x;$
- (2) $m(x, p, \dots, p) = m(p, x, p, \dots, p) = \dots = m(p, \dots, p, x)$. Then $H_1(X; \mathbb{Z}_n) = 0$.

PROOF. We suppose the hypotheses of (2.2) and define f^{nj} , d^n : $X \to X^n$ as in the hypothesis of (2.1). Observe that md^n is the identity on X and that, for $j \in \{2, \dots, n\}$, $mf^{nj} = mf^{n1}$. Let h be in $H_1(X; \mathbb{Z}_n)$. By (2.1), $h = m_*d^nh = \sum_{j=1}^n m_*f^{nj}h = n(m_*f^{nj}_*h) = 0$, the last equality holding because the use of \mathbb{Z}_n as coefficient group insures that every element of a Čech group is of order n.

(2.3) Suppose $n \ge 2$, X is a compact subset of \mathbb{R}^n and G is a nontrivial abelian group for which $H_{n-1}(X; G) = 0$. If the Čech homology theory

on compact pairs using G as coefficient group is exact, then $\mathbb{R}^n - X$ is connected.

PROOF. Suppose on the contrary R^n-X has a bounded component C. Let E be an n-ball with $X \cup C$ in its interior and its bounding (n-1)-sphere denoted by S. Define T = E - C. Since T is a proper subset of E and contains S, S is a retract of T. Accordingly the inclusion map $k: S \subset T$ induces a monomorphism $k_*: H_{n-1}(S; G) \to H_{n-1}(T; G)$ and since $H_{n-1}(S; G) \approx G \neq 0$, $H_{n-1}(T; G) \neq 0$. In the following commutative diagram the dimension preserving homomorphisms are induced by appropriate inclusion maps.

$$H_{n-1}(X;G) \stackrel{\partial_1}{\leftarrow} H_n(X \cup C, X;G)$$

$$\downarrow v_* \qquad \downarrow u_*$$

$$H_{n-1}(E;G) \stackrel{j_*}{\leftarrow} H_{n-1}(T;G) \stackrel{\partial_2}{\leftarrow} H_n(E, T;G).$$

Since $H_{n-1}(X; G) = 0$, $\partial_2 u_* = v_* \partial_1 = 0$. By [6, p. 266, Theorem 5.4], the excision u_* is an isomorphism. Hence ∂_2 is a 0-homomorphism and, by exactness, j_* is a monomorphism. Since $H_{n-1}(T; G) \neq 0$, $H_{n-1}(E; G) \neq 0$, which is false.

(2.4) If a compact subset X of \mathbb{R}^2 is an m_n -space, $\mathbb{R}^2 - X$ is connected.

PROOF. Suppose, on the contrary, that a compact subset X of \mathbb{R}^2 admits an n-mean m and separates a point p from a point q. \mathbb{R}^2 is locally connected and unicoherent [5, p. 73, Corollary 6]. By a theorem of A. H. Stone [8, p. 429, Theorem 1] some component C of X separates p from q. The restriction of m to C^n is an n-mean on C [2, p. 212, Satz 4]. By (2.2) $H_1(C, \mathbb{Z}_n) = 0$. The Čech homology theory for compact pairs with \mathbb{Z}_n as coefficient group is exact [6, p. 248, Theorem 7.6]. By (2.3), $\mathbb{R}^2 - C$ is connected, which is a contradiction.

(2.5) A nonvoid compact locally connected subset of \mathbb{R}^2 that does not separate \mathbb{R}^2 is an m_n -space.

PROOF. Suppose X is a nonvoid compact locally connected subset of \mathbb{R}^2 and $\mathbb{R}^2 - X$ is connected. Consider first the case in which X is connected. The function $m: (\mathbb{R}^2)^n \to \mathbb{R}^2$ defined by $m(p_1, \dots, p_n) = (1/n) \sum_{i=1}^n p_i$ shows that \mathbb{R}^2 is an m_n -space. Since X is a retract of \mathbb{R}^2 [4, p. 132, (13.1)] and any retract of an m_n -space is an m_n -space [2, p. 212, Satz 3], X is an m_n -space.

If X is not connected, X has at most finitely many components, C_1, \dots, C_k , each of which, by the above argument, is an m_n -space. For each i in $\{1, \dots, k\}$ let $m_i: C_i^n \to C_i$ be an n-mean. Let p be a

point of X. We define an *n*-mean $m: X^n \rightarrow X$ by the rule

$$mq = m_i q$$
, if $q \in C_i^n$, $i \in \{1, \dots, k\}$;
 $= p$, if $q \in X^n - \bigcup_{i=1}^k C_i^n$.

REFERENCES

- 1. L. W. Anderson and L. E. Ward, Jr., One-dimensional topological semilattices, Illinois J. Math. 5 (1961), 182-186.
 - 2. G. Aumann, Über Räume mit Mittelbildungen, Math. Ann. 119 (1943), 210-215.
 - 3. P. Bacon, An acyclic continuum that admits no mean, Fund. Math. (to appear).
 - 4. K. Borsuk, Theory of retracts, PWN-Polish Sci. Publ., Warsaw, 1967.
- 5. S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112.
- 6. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.
- 7. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1941.
- 8. A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), 427-447.

University of Florida