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used under (i) implies z á 0 on St- Hence M ^ 0. Similarly by consider-

ing — w, the minimum is nonnegative. Thus w = 0.
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AN ELEMENTARY DERIVATION OF KHINTCHINE'S
ESTIMATE FOR LARGE DEVIATIONS

MARK PINSKY1

1. Introduction. In classical proofs of the law of the iterated loga-

rithm, the estimate

(1.1) P(Sn/Vn ^ an) = exp[- (a'/2)(l + o(l))]        (n Î «)

plays a key role (see [3, pp. 41-49]). Here S„ is a sum of ra independent

identically distributed random variables with mean zero and variance

one; {an} is a fixed numerical sequence with some growth property.

The first direct proof [2 ] of inequalities of this type involved cumber-

some estimates of bilateral Laplace transforms and was restricted to

bounded random variables. More recently, proofs of (1.1) and re-

lated inequalities have been derived as a corollary to global inequali-

ties of the Berry-Essen type:

/ Sn        \       ra exp(-t2/2)
(1.2) P[—Za)=\ 7 dt + 0(n-^2)        (nî»)

\Vra       /     Ja       (2w)112

when the error is uniform in a£(— °o, «>). The key observation in

these proofs is that for a suitable choice of a = a„, the error term in

(1.2) can be absorbed into the Gaussian term (see [l, pp. 212-219],

and [4]).

The purpose of this note is to point out that the idea of absorbing

the error can be applied to a (much more easily proved) smoothed

version of (1.2) to yield (1.1). The proof is based on Trotter's method

of operators [5], which is presented in the lemma below. The whole

point is that while Trotter's method seems incapable of yielding
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(1.2), the estimation of "not too large" deviations is insensitive to

the approximation of a unit step function by a smooth function.

2. Proof of the inequalities (1.1). Let {Xn}nn be independent

random variables with the same distribution; we make the normali-

zations E(Xn)=0, E(Xl) = l, and assume that for some 5>0,

E(|Xn|2+5)<~;letSn = X1+ • • ■ +Xn.

Lemma. If f has three bounded continuous derivatives, we have

I    r/S»\l       f"        exp(-x2/2) Il/Il

where K depends only on 5 and ||/|| =supI[|/"(x)| +[/'"(x)| ].

Proof. Let {g»}nii be independent gaussian random variables

with mean zero, variance one, completely independent of {X„}„ai.

Then

E[f(Sn/Vn)] - E[f(gl))

= E[f((X1 + ■■■ + Xn)/Vn)] - E\j((gl + ■■■ + gn)/Vn)}

= Í,Ai

where 5<,„ = gi + • • • +gi-i+Xi+i+ • • • +Xn. If we bring in the

modified Taylor estimate:2 \f(x+y)-f(x)-yf'(x)-(y2/2)f"(x)\

á \y\ 2+5||/||, it follows that | Ai\ ^||/|| Xw-'-^XEflXi\ 2+5+1gt\ 2+J]
which is of the required form.

Theorem. If {an} is a sequence increasing to + °o so that a\ — log «

—» — oo, then for each e > 0

(2.1)   exp{-(aI/2)(14-e)}gP(5,/V«ea„)áexp{(-a'/2)(l-e)}

for n^N(e).

Proof. Let/*(x)=/0(x—a„Tl/2) where/0 is a fixed G function

vanishing for x^—1/2, equal to one for x^l/2 with 0^/0^l.

Let pn be the middle term in (2.1); $>(x) denotes the tail integral

(2t)-1'2/" exp(-«!/2)(ÍM. Then clearly

1 To prove this, consider separately the cases \y\ >1 and \y\ SI and apply the

two and three term Taylor expansions respectively.
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(2.2) E[fn(Sn/Vn)\ ûpnû E[fUsn/Vn)].

If we apply the lemma to the extreme members of (2.2) and then over

(respectively under) estimate f„ by an indicator function, it follows

that

(2.3) $0„ + 1) - Kn-V* Ú pn^ $0» + 1) + Kn^'2

where K is independent of w. If we now use the well-known estimate

for the tail: logi>(a„± 1) = —a2J2 (1+0(1)), it becomes clear that the

hypothesis on {an\ is equivalent to n~il2/$n-^>§, where$n=$(an + 1).

Thus we have log £„/log <£(an)—A and hence the result.

3. Extensions of the method. Let ¡I,)«i be independent random

variables with mean zero and variance o\; let S„ = Xi-\- ■ ■ ■ -\-X„,

sl = o-\+ ■ • • +oi rn = s;u+»J?k,1E[\Xk\2+s]. The above method

easily generalizes to show that if for some ô>0, rn—»0 then we have

P(Sn/sn^an) =exp[— a2J2 (l+o(l))] for any numerical sequence

{an} for which a2/log(l/r„)—>0 as ra f <» .
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