used under (i) implies $z \le 0$ on S_T . Hence $M \le 0$. Similarly by considering -w, the minimum is nonnegative. Thus w = 0.

BIBLIOGRAPHY

- 1. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall Englewood Cliffs, N. J., 1964.
- 2. M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1967.

University of California, Los Angeles

AN ELEMENTARY DERIVATION OF KHINTCHINE'S ESTIMATE FOR LARGE DEVIATIONS

MARK PINSKY1

1. **Introduction.** In classical proofs of the law of the iterated logarithm, the estimate

$$(1.1) P(S_n/\sqrt{n} \ge a_n) = \exp[-(a_n^2/2)(1+o(1))] (n \uparrow \infty)$$

plays a key role (see [3, pp. 41-49]). Here S_n is a sum of n independent identically distributed random variables with mean zero and variance one; $\{a_n\}$ is a fixed numerical sequence with some growth property. The first direct proof [2] of inequalities of this type involved cumbersome estimates of bilateral Laplace transforms and was restricted to bounded random variables. More recently, proofs of (1.1) and related inequalities have been derived as a corollary to global inequalities of the Berry-Essen type:

$$(1.2) \quad P\left(\frac{S_n}{\sqrt{n}} \ge a\right) = \int_a^{\infty} \frac{\exp(-t^2/2)}{(2\pi)^{1/2}} dt + O(n^{-1/2}) \qquad (n \uparrow \infty)$$

when the error is uniform in $a \in (-\infty, \infty)$. The key observation in these proofs is that for a suitable choice of $a = a_n$, the error term in (1.2) can be absorbed into the Gaussian term (see [1, pp. 212-219], and [4]).

The purpose of this note is to point out that the idea of absorbing the error can be applied to a (much more easily proved) smoothed version of (1.2) to yield (1.1). The proof is based on Trotter's method of operators [5], which is presented in the lemma below. The whole point is that while Trotter's method seems incapable of yielding

Received by the editors July 15, 1968.

¹ Research supported in part under contract N0014-67-A-0112-0015 at Stanford University, Stanford, California.

- (1.2), the estimation of "not too large" deviations is insensitive to the approximation of a unit step function by a smooth function.
- 2. Proof of the inequalities (1.1). Let $\{X_n\}_{n\geq 1}$ be independent random variables with the same distribution; we make the normalizations $E(X_n)=0$, $E(X_n^2)=1$, and assume that for some $\delta>0$, $E(|X_n|^{2+\delta})<\infty$; let $S_n=X_1+\cdots+X_n$.

LEMMA. If f has three bounded continuous derivatives, we have

$$\left| E\left[f\left(\frac{S_n}{\sqrt{n}}\right) \right] - \int_{-\infty}^{\infty} f(x) \, \frac{\exp(-x^2/2)}{(2\pi)^{1/2}} \, dx \right| \leq K \, \frac{\|f\|}{n^{\delta/2}} \, E(\left| X_1 \right|^{2+\delta})$$

where K depends only on δ and $||f|| = \sup_{x} [|f''(x)| + |f'''(x)|]$.

PROOF. Let $\{g_n\}_{n\geq 1}$ be independent gaussian random variables with mean zero, variance one, completely independent of $\{X_n\}_{n\geq 1}$. Then

$$E[f(S_n/\sqrt{n})] - E[f(g_1)]$$

$$= E[f((X_1 + \dots + X_n)/\sqrt{n})] - E[f((g_1 + \dots + g_n)/\sqrt{n})]$$

$$= \sum_{i=1}^n \left\{ E\left[f\left(\frac{B_{i,n} + X_i}{\sqrt{n}}\right)\right] - E\left[f\left(\frac{B_{i,n} + g_i}{\sqrt{n}}\right)\right]\right\}$$

$$= \sum_{i=1}^n A_i$$

where $B_{i,n} = g_1 + \cdots + g_{i-1} + X_{i+1} + \cdots + X_n$. If we bring in the modified Taylor estimate: $|f(x+y) - f(x) - yf'(x) - (y^2/2)f''(x)| \le |y|^{2+\delta}||f||$, it follows that $|A_i| \le ||f|| \times n^{-1-\delta/2} \times E[|X_i|^{2+\delta} + |g_i|^{2+\delta}]$ which is of the required form.

THEOREM. If $\{a_n\}$ is a sequence increasing to $+\infty$ so that $a_n^2 - \log n$ $\to -\infty$, then for each $\epsilon > 0$

$$(2.1) \quad \exp\left\{-\left(a_n^2/2\right)(1+\epsilon)\right\} \leq P(S_n/\sqrt{n} \geq a_n) \leq \exp\left\{\left(-a_n^2/2\right)(1-\epsilon)\right\}$$
for $n \geq N(\epsilon)$.

PROOF. Let $f_n^{\pm}(x) = f_0(x - a_n \mp 1/2)$ where f_0 is a fixed C_3 function vanishing for $x \le -1/2$, equal to one for $x \ge 1/2$ with $0 \le f_0 \le 1$. Let p_n be the middle term in (2.1); $\Phi(x)$ denotes the tail integral $(2\pi)^{-1/2} \int_x^{\infty} \exp(-u^2/2) du$. Then clearly

³ To prove this, consider separately the cases |y|>1 and $|y| \le 1$ and apply the two and three term Taylor expansions respectively.

$$(2.2) E[f_n(S_n/\sqrt{n})] \leq p_n \leq E[f_n(S_n/\sqrt{n})].$$

If we apply the lemma to the extreme members of (2.2) and then over (respectively under) estimate f_n^{\pm} by an indicator function, it follows that

$$(2.3) \qquad \Phi(a_n+1) - \overline{K}n^{-\delta/2} \le p_n \le \Phi(a_n+1) + \overline{K}n^{-\delta/2}$$

where \overline{K} is independent of n. If we now use the well-known estimate for the tail: $\log \Phi(a_n \pm 1) = -a_n^2/2$ (1+o(1)), it becomes clear that the hypothesis on $\{a_n\}$ is equivalent to $n^{-\delta/2}/\Phi_n \rightarrow 0$, where $\Phi_n = \Phi(a_n \pm 1)$. Thus we have $\log p_n/\log \Phi(a_n) \rightarrow 1$ and hence the result.

3. Extensions of the method. Let $\{X_n\}_{n\geq 1}$ be independent random variables with mean zero and variance σ_n^2 ; let $S_n = X_1 + \cdots + X_n$, $s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2$, $r_n = s_n^{-(2+\delta)} \sum_{k=1}^n E[|X_k|^{2+\delta}]$. The above method easily generalizes to show that if for some $\delta > 0$, $r_n \to 0$ then we have $P(S_n/s_n \ge a_n) = \exp[-a_n^2/2 \ (1+o(1))]$ for any numerical sequence $\{a_n\}$ for which $a_n^2/\log(1/r_n) \to 0$ as $n \uparrow \infty$.

REFERENCES

- 1. K. L. Chung, A course in probability theory, Harcourt Brace, New York, 1968.
- 2. A. Y. Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitrechung, Ergebnisse der Math., Vol. 2, Springer-Berlin, Berlin, 1933.
 - 3. J. Lamperti, Probability, Benjamin, New York, 1966.
- 4. V. V. Petrov, On a relation between an estimate of the remainder in the central limit theorem and the law of the iterated logarithm, Theor. Probability Appl. 11 (1966), 454-458.
- 5. H. F. Trotter, An elementary proof of the central limit theorem, Arch. Math. 9 (1959), 226-234.

STANFORD UNIVERSITY