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Let7>= {\z\ <l}, and let C= {\z\ =l}. We say that f(z), defined
in D, has the radial limit a at eieEC if \imr^if(reiB)=a. One such

theorem concerning radial limits for bounded holomorphic functions

is the classical F. and M. Riesz uniqueness theorem:

Theorem. Iff(z) is holomorphic and bounded in D and has the radial

limit zero at each point of a subset of C of positive measure, then /=0.

The Riesz theorem is not true for sets of measure zero since it is

known that given any set PC C of measure zero (in particular, P may

be of second category) there exists a nonconstant function f(z),

holomorphic and bounded in D, with radial limit zero at each point

of P [4, p. 214]. However, the following theorem shows that some-

thing very definitely can be said about the rate at which a bounded

holomorphic function approaches zero along radii terminating at a

subset of C of second category.

Theorem 1. Let ß(r) be any positive monotone decreasing function

on [O, 1) such that limr-*i ß(r) =0. Let S be any subset of C of second

category. Iff(z) is any function bounded and holomorphic in D with the

property \f(rea)\ = o(ß(r)) for each eiBES, then /=0.

Proof. First note that by the main theorem in [l, p. 6] there exists

a function g(z), holomorphic and nonconstant in D, such that

max    I g(re<e) \   < i/(ß(r))   and   lim g(reiB) = 0
0S»<2t r-»l

for eaET, where T is a subset of C of measure 2ir. Consider the func-

tion h(z)=f(z)-g(z). Now note that linw h(reiS) = 0 for e^ESKJT.

Since SUT is of measure 2w and second category, h(z) satisfies the

hypotheses of the Lusin and Priwalow radial uniqueness theorem

[4, p. 232], and we see that h(z) = 0. Hence f(z)=0.

Remark 1. Note the hypothesis of the theorem does not say that

f(z) goes uniformly to zero along radii terminating at points of S (in

that case the theorem is trivially true for arbitrary holomorphic
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functions) but only that along each such radius |/(f-e*9)| eventually

goes to zero faster than p(r).

Remark 2. With a little care, minor alterations in the above proof

will yield an analogous theorem for meromorphic functions of bounded

characteristic. There is also, of course, an analogous theorem for

negative harmonic functions which go to minus infinity faster than

any given fixed rate on a set of second category.

Remark 3. Recalling Beurling's uniqueness theorem for univalent

functions [2, pp. 11-12], which says that if a univalent function/(z)

has radial limit zero on a set of positive outer capacity, then/(s) = 0.

This might lead one to suspect that the correct hypothesis on S in

Theorem 1 should be of positive outer capacity. This is not true,

however, because given any closed set N (QC) of zero measure by

the Rudin-Carleson theorem [3, p. 81 ] there exists a nonconstant

function f(z) which is bounded and holomorphic in D, continuous in

DUC, and such that f(ea) = 0 if eieQN.

Remark 4. We can prove an analog of Theorem 1 for arbitrary

holomorphic functions if we assume that p(r) tends to zero more

rapidly than exp[ — (1— r)~l~']. This statement is stronger than the

remark in [5, p. 384] but it easily follows from a stronger form of the

"Picard-Schottky theorem in an angle," a fact which the second

author did not realize at the time.

It is possible that this analog also holds for all p(r)—*0. However,

it is in this "gray area," where the function is unbounded but goes to

zero no faster than order one, that a counterexample may exist since

in this case the function has "lots of room to move around" but is not

required to go to zero fast enough to cause "Picard property" be-

haviour.
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