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The purpose of this paper is to study the strong convergence of the

sequence {^4n}, where A is an operator on a Hubert space (cf. [3],

[ó]). It is known that if A is a completely nonunitary contraction2

on a Hubert space, then the sequence {An} converges weakly. The

question naturally arises as to which operators on a Hubert space

does the weak convergence of {An} imply the strong convergence of

{^4n}. In §2, we investigate this question for completely continuous

operators and spectral operators with completely continuous imagi-

nary parts.

Indeed, we will prove that {An} converges strongly for certain

operators A using the weak convergence of the sequence {^4"} and

certain spectral properties of A. It seems that this approach to the

strong convergence of {^4™} is new and essentially different from the

methods already employed. F. Browder and W. Petryshyn have

shown that for a selfadjoint contraction A, the sequence {An} con-

verges strongly if and only if ( — 1) is not a proper value of A [3,

Theorem 3]. Our work will generalize this result. In connection with

the functional equation x — Ax=y in Hubert space, Browder and

Petryshyn have shown that if {A"} converges strongly then solutions

of this equation can be found. In §3 a result similar to this is obtained

if {^4n} converges weakly.

Throughout this paper an operator always means a bounded linear

transformation on a complex Hubert space 77. An operator is said to

be strong (resp. weak) asymptotically convergent if the sequence

{^4n} converges strongly (resp. weakly) in the space £(77) of all

bounded operators on 77. For an operator A on 77, if there exists an

integer M< <*> such that \\A"\\ <M, n = l, 2, ■ ■ • , then A is said to

be asymptotically bounded. If M^i then A is called a contraction.

We will denote by 31(A) the null set of the operator A, i.e. 91 (.¡4)

= {xEH\A(x)=0}.
1. This section is concerned with the asymptotic convergence of a

Received by the editors August 2, 1968.

1 This work is part of the author's Ph.D. dissertaion at the University of Cali-

fornia, Irvine, directed by Professor Noboru Suzuki.

s An operator^ is said to be completely nonunitary (resp. selfadjoint, normal) if

A does not have a nonzero reducing subspace 9JÎ such that A/SSSl is unitary (resp.

selfadjoint, normal).
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general contraction. Our result is based on the following lemma which

is a consequence of [9, Theorem 2] (for direct proofs, see [l] and [5]).

Lemma 1. Every completely nonunitary contraction is weak asymptot-

ically convergent to zero.

In what follows, D will denote the set { — 1, 1} union the interior

of the unit disk in the complex plane. By decomposing a contraction

into unitary and completely nonunitary parts we can prove:

Theorem 1. Let A be a contraction such that the spectrum of A,

denoted by <r(A), is contained in D. Then A is weak asymptotically con-

vergent if and only if ( — 1) is not a proper value of A.

Proof. There exists a projection P commuting with A such that

A =Ap@Ai-p where AP, the restriction of A to PH, is unitary and

Ai-p, the restriction of A to (I—P)H, is completely nonunitary (cf.

[8, Theorem 3.2, p. 9]). Since a (A) =o-(Ap)KJ<t(Ai-p) and AP is uni-

tary, thus cr(^4p)C { —1, 1 }• Suppose that ( — 1) is not a proper value

of A. Then <t(Ap)= {l} because isolated points of the spectrum of

unitary operators are proper values. Thus yip is the identity Ip on

PH. Clearly, {AP} converges to IP on PH, and by Lemma 1, {^4"_p}

converges weakly to zero on (I — P)H. Therefore {^4"} converges

weakly to Jp®0, that is to say, A is weak asymptotically convergent.

Conversely, it should be noted that for any operator to be weak

or strong asymptotically convergent, it is necessary that X is not a

proper value of A if | X | 2:1 and X 9* 1 ■

Remark. Let A be a contraction on H. Because of the decomposi-

tion H=m.(I-A)®(I-A)H- (cf. [10, §144]), if {An} converges

weakly or strongly then the limit is just the projection on ïfl(I-A).

Furthermore, Sl(I-A) and (I — A)H~ are reducing subspaces for A.

2. In this section we restrict our attention to the cases of spectral

operators with completely continuous imaginary parts and com-

pletely continuous operators. It will be shown that the spectral con-

ditions in Theorem 1 imply the strong asymptotic convergence of

the operator. If, in fact {S"} does converge and has completely con-

tinuous imaginary part we can show 5 has the spectral conditions of

Theorem 1.

Lemma 2. Let S be a strong asymptotically convergent operator with

completely continuous imaginary part. Then a(S)QD and ( — 1) is not

a proper value of S.

Proof. By the Principle of Uniform Boundedness, ||S"|| gM< 00

for « = 1, 2, • • • . Let p(S) be the spectral radius of 5 then p(S)
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= limn||5"||1/nálimnJl71/n = l. Thus \Ea(S) implies that |X| SSI.
Because of the fact that S has completely continuous imaginary part,

every nonreal element of cr(S) is a proper value of 5. As in the 'neces-

sary' part of the proof of Theorem 1, we can conclude that <r(S)ED

and ( — 1) is not a proper value of S.

If A is an operator and {An} converges strongly then {An} always

converges weakly. In particular, if A is a selfadjoint contraction,

then the converse is also true.

Lemma 3. Let A be a selfadjoint contraction. Then A is strong asymp-

totically convergent if and only if A is weak asymptotically convergent.

Proof. By the remark in §1, 77=91(7-4)8(7-4)77" where

91(7-4) and (7-4)77 "reduce A. If we set 4i = 4/3l(7-4) and
42 = 4/(7-4)77", then A=Ai@A2. Clearly {4?} converges

strongly. For x£ (7-4)77"we have \\An2x\\2 = (An2(x),An2(x)) = (Afx,x)

—>0 as n—->oo. Thus 4 is strong asymptotically convergent.

In the following two theorems we will make use of the technical

lemma:

Lemma 4. Let {An} be a sequence of operators on 77 with uniformly

bounded norms which converges strongly to an operator B on a dense set

in 77. Then {An} converges strongly to B on 77.

Proof. The lemma follows from the inequalities:

||4m* - Bx\\ é \\Anx - Any\\ + \\Any - By\\ + \\By - Bx\\

£ (il7 + ||p||)||x-y||-f-||4„y-Py||,

where ||4„|| gJl7 for « = 1, 2, • • •  and x, y£77.

As operator 4 on 77 is called a spectral operator if there exists a

resolution of the identity for 4. If £ is a resolution of the identity

for an operator 4 and A=Ja XdEX, where ß is the support of E and

is compact, then A is called a scalar type operator. It has been

shown in [4] that an operator 5 is of scalar type if and only if 5

= RTR~1 where T is a normal operator and R is an invertibie opera-

tor on 77. Furthermore, N. Dunford has shown that T is a spectral

operator on 77 if and only if T = S+N where S is of scalar type, N is

a quasinilpotent operator and SN = NS. The decomposition T = S+N

of a spectral operator is unique. For these statements and the details

of the theory of spectral operators we refer to [4].

Theorem 2. Let S be a scalar type operator with completely continuous

imaginary part. Then S is strong asymptotically convergent if and only

if cr(S) ED and ( — 1) is not a proper value of S.
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Before proving this theorem let us show that we need only consider

the case when S is a normal operator with completely continuous

imaginary part. Since S is a scalar type operator, there exists an in-

vertible operator R such that RSR-1 = T and T is normal. Further-

more, N. Suzuki has pointed out in [13] that if 5 has completely

continuous imaginary part then so does T. For completeness we shall

sketch the proof of that statement. The spectral properties of an

operator with completely continuous imaginary part are well known

(cf. [2]). Since T is similar to 5 we can conclude that every nonreal

point in a(T) is an isolated point, that there are at most countably

many of them, which we denote by {X„}, and if the set is infinite,

then Im Xn—>0. Furthermore, if X¿ is a nonreal point in o-(S), then the

proper subspace 9l(X¿ — S) is finite dimensional. Since 3l(X< — S)

= i?9l(X¿—T), it follows that 9l(X¡— T) is finite dimensional. Thus

we can decompose T as To® ^X¿/¡ where H = Ho® y"l®3l(X¿— T).

Since To is normal with real spectrum we conclude that To is self-

adjoint. It then follows that T has completely continuous imaginary

part.

The sequence {S"} converges strongly if and only if {Tn} con-

verges strongly and T satisfies the conditions a(T)QD with ( — 1)

not a proper value of T if and only if S satisfies these conditions for

5. Thus to prove Theorem 2, we can assume that 5 is normal.

Proof of Theorem 2. There exists a projection P commuting

with S such that 5 = Sp © Si-p where Sp, the restriction of S to PH,

is selfadjoint and Si-p, the restriction of 5 to (I—P)H, is completely

nonselfadjoint. Furthermore, (I—P)H is generated by vectors of the

form SnCx, wherexQH, n = 0, 1, 2, • • • , and C=lm(S) = (S — S*)/2i

(cf. [2, p. 279]). Since C commutes with S, therefore C(H)~ = (I-P)H.

Suppose that a(S)QD and ( — 1) is not a proper value of S. Since

p(S) =\\S\\ then ||S|| ^1 and 5 is a contraction. By Theorem 1, {Sn}

converges weakly and in particular {SP} and {Sj?_p} converge

weakly. Sp is selfadjoint, thus Lemma 3 implies that {Sp} converges

strongly. If xQ C(H), x = Cy for some yQH, then (S/_p)nx = (Si-p)"Cy

= C(Si-p)"y. Because {(Si-p)"y} converges weakly and C transforms

weak convergent sequences into strong convergent sequences,

{(Si-p)"x} converges strongly. By Lemma 4, {Sn} converges

strongly on (I—P)H. Therefore 5 is strong asymptotically conver-

gent.

Conversely, let {Sn} converge strongly. Then by Lemma 2, we

can conclude that <r(S)QD and ( — 1) is not a proper value of S.

Remark. Theorem 2 directly generalizes [3, Theorem 3], as men-

tioned in the introduction. In that theorem if 5 is a selfadjoint con-
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traction then {Sn} converges strongly if and only if ( — 1) is not a

proper value of 5. This result follows directly from Theorem 1 and

Lemma 3.

We now extend Theorem 2 to the case where 5 is a spectral con-

traction.

Theorem 3. Let A be a spectral contraction with completely con-

tinuous imaginary part. Then A is strong asymptotically convergent if

and only if a(A)ED and (—1) is not a proper value of A.

Proof. Let A=S+N be the canonical decomposition of 4 into

scalar and radical parts. By Theorem 1 in [12] TV is completely con-

tinuous, so that Im(5) = Im(4) —Im(A^) is completely continuous.

Let R be an invertible operator such that RSR~l = T and T is a nor-

mal operator. Then as in Theorem 2, T has completely continuous

imaginary part.

Let B = RAR-1 = RSR-l+RNR~l = T+L. Then T is normal, L is

quasinilpotent and completely continuous and TL = LT. The opera-

tors B, A, S and T all have the same spectrum. The following decom-

position for B is given in [12]. The Hubert space 77= E"-o 877,-,

n=°°, and B = T/H0 8 E"-i © X.+L,-, where Xi+7,,- denotes

Çkil+L)/Hi.
Suppose that o(A)ED and ( — 1) is not a proper value of 4. Then

ar(T)ED and ( — 1) is not a proper value of T, thus ||P|| Sil because

T is normal. Thus P/770 satisfies the hypothesis of Theorem 2, and

we conclude that {Bn} converges strongly on 77o. If |X¡| <1, then

crÇki+Li) = {X,} is contained in the interior of the unit disc. By Theo-

rem 2 in [ll], \i+Li is similar to an operator whose norm is strictly

less than 1. Thus we obtain that {Bn} converges uniformly to zero on

77,-, when |X,| <1. Now assume that some X, = l. The sequence

{(7<+L,)n} converges weakly since 7,+Lj = P/77j and B satisfies the

hypothesis of Theorem 1. Since (It+Li) is asymptotically bounded,

77,- is decomposed into the algebraic direct sum 77¿ = 9l(Li)+L¿(77,)~

[10, §144]. It is clear that on 91(7,,), {(Ii+Li)n} is strongly conver-

gent. If x = Li(y), then (7,-f Li)nx = Li(Ii+Li)ny is strongly conver-

gent, because {(7,+L,)ny} is weakly convergent and L,- is completely

continuous. Hence by Lemma 4, {Bn} converges strongly on 77,-.

Finally if some X<=—1, then 77,= Li(77,)~ because ( — 1) is not a

proper value of B. Just as above, we can conclude that {B"} con-

verges strongly on 77,- if X,= — 1. Hence {Bn} converges strongly on

each Hi (i = 0, 1, • • • ) and thus {Bn} is strongly convergent on77.

Therefore, 4 =R~1BR is strong asymptotically convergent.

Conversely, if the sequence  {4B}  converges strongly, then by
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Lemma 2 we can conclude that a(A)QD and (—1) is not a proper

value of A.

We shall now use Theorem 1 in conjunction with the following

lemma to prove the strong asymptotic convergence of certain com-

pletely continuous operators.

Lemma 5. If A is a completely continuous operator, then {An} con-

verges strongly if and only if {A"} converges weakly.

Proof. A completely continuous operator transforms weakly

convergent sequences into strongly convergent sequences. Hence if

{An} converges weakly then for x Q H, {Anx} is a weakly convergent

sequence so that {yl(;4nx)} = {4n+1x} is strongly convergent.

Just as in Theorem 3, we can prove the strong asymptotic conver-

gence of an operator from the weak asymptotic convergence obtained

by applying Theorem 1 to the operator.

Theorem 4. Let A be an asymptotically bounded completely con-

tinuous operator. Then A is strong asymptotically convergent if and only

if o(A)QD and ( — 1) is not a proper value of A.

Proof. Since a completely continuous asymptotically bounded

operator is similar to a contraction, as seen in [7], we may assume

that A is a contraction. By Lemma 5, {An} converges strongly if and

only if {An} converges weakly. Moreover, by Theorem 1, {An} con-

verges weakly if a(A)QD and ( — 1) is not a proper value of A. By

Lemma 2, this last statement is also 'only if.'

Remark. Let A be a contraction which satisfies the hypothesis of

Theorem 1, that is, a(A)QD and (—1) is not a proper value of A.

Then if for some integer k, Ak satisfies the hypothesis of Theorems 2,

3, or 4 we can conclude that {An} converges strongly. This is a con-

sequence of the following lemma.

Lemma 6. Let A be weak asymptotically convergent and for each xQH

there is a sequence of integers {n(x)} such that {Anix)(x)} converges

strongly. Then A is strong asymptotically convergent.

Proof. By the Principle of Uniform Boundedness A is asymptoti-

cally bounded by M. Thus H=m.(I-A) + (I-A)H~, [10, §144],
where ïfl(I—A) and (I —A)H are invariant subspaces of A. Clearly if

xQ%(I—A) then {Anx} converges strongly. If xQ(I—A)H~ then

{^Lnx} converges weakly to zero, so that {^4n(l)x} converges strongly

to zero. Now

|| il'*|| = ||i4**il»*w*|| ú IMHI ||¿B<(l>s|| á Jf||i4"*w«H,
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where ki+ni(x) =i and nt(x) is the largest element of {n(x)} less than

or equal to i. Since ||4n(¡E,:»¡:||—>0 as n(x)—>oo it follows that ||4*(*)||

^M||4"i(l):x:||->0 as »'-><».

3. Let T be an operator which is strong asymptotically convergent.

F. Browder and W. Petryshyn in [3] have shown that this condition

enables us to discover solutions of a functional equation of the form

(*) x-Tx = y,

by the iteration process of Picard-Poincaré-Neumann. In fact, we

define the vectors xn=Tnx0+(y+Ty+ • • • +Tn~1y), where x0 and

y are given vectors. Then if y is in the range of (I—T), the sequence

{xn} converges strongly to a solution x of (*).

A similar theorem can be proved for weak asymptotic convergence

and applied to contractions 4 such that o(A)ED and ( — 1) is not a

proper value of 4. The proof presented in [3] for the case of strong

asymptotic convergence can be modified in the obvious ways to

prove :

Theorem 5. Let T be a weak asymptotically convergent operator on

77. Then:

(a) 7/y is an element of the range of (I—T), the sequence {xn} de-

fined above for any initial approximation Xo will converge weakly to a

solution x of x—Tx=y.

(b) If any subsequence {xnj} of the sequence converges weakly to an

element x, then x is a solution ofx—Tx = y and in fact the whole sequence

{xn} converges weakly to x.

(c) If {xn} is bounded, then {xn} converges weakly to a solution x of

x — Tx = y.

I wish to express my appreciation to Professor Noboru Suzuki for

his help and guidance in the preparation of this paper.
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