HARRISON PRIMES IN A RING WITH FEW ZERO DIVISORS

MAX D. LARSEN1

1. Introduction. In [4] D. K. Harrison introduces preprimes, primes, and valuation preprimes to pave the way for an algebraic number theory in arbitrary commutative rings. He shows [4, §3] that his definitions coincide with the classic definitions of valuation theory when restricted to fields. In this paper the author extends Harrison's results to a large class of rings which includes all Noetherian rings. In addition an analog to the approximation theorem for valuations is developed for this class of rings.

Let R be a commutative ring with unity consisting entirely of zero divisors and units and having finitely-many maximal ideals, for example, the total quotient ring of a Noetherian ring. The adjunction of the word "regular" to a nonempty subset of R will mean that the set contains at least one regular element; i.e., a nonzero divisor. Let X be the set of regular finite primes P of R such that the total quotient ring of P:P is R. Then all these subrings have few zero divisors [3, p. 203]. The terminology and results of [3] and [4] will be used freely. For any subring A of R and multiplicatively-closed subset S of A consisting of regular elements, we will assume that the ring of quotients A_S is canonically embedded in R. For two subrings A, B of R, $A:B=\{x\in R|xB\subseteq A\}$. In placing the above restriction on R and X, the author is prescribing a situation resembling the situation involved in the classical valuation theory in fields.

Give X the topology generated by taking as basic open sets all sets of the form $\{P \in X \mid P \cap E = \emptyset\}$ where E is a finite set of regular elements of R. This is not the same topology as Harrison uses in [4, p. 10]. Let X^{\sharp} be the set of closed irreducible subsets C of X such that $\bigcap C = \bigcap \{P \mid P \in C\}$ is regular. Give X^{\sharp} the topology which takes sets of the form $\{C \in X \mid C \cap V \neq \emptyset\}$, for some open subset V of X, as open sets. Let \mathfrak{X} be the set of all regular valuation preprimes S of R such that the total quotient ring of S:S is R and topologize \mathfrak{X} by using $\{S \in \mathfrak{X} \mid S \cap E = \emptyset\}$, for a finite set E of regular elements of R, as basic open sets. A regular valuation pair (A, P) of R is simply a valuation pair (A, P) with P regular.

Received by the editors August 29, 1968.

¹ During the writing of this paper the author received support from NSF under Grant GP-8932.

2. Extension of Harrison's results.

THEOREM 1. Let P be a regular preprime of R and let A = P:P. P is a valuation preprime of R with R as the total quotient ring of A if and only if (A, P) is a valuation pair of R.

The proof of this assertion is embodied in the following propositions which will show that X^{\dagger} and \mathfrak{X} are homeomorphic under the maps $C \in X^{\dagger} \to \cap C$ and $P \in \mathfrak{X} \to \{Q \in X \mid P \subseteq Q\}$. The continuity of these maps is easy to check after the propositions establish their one-oneness.

REMARKS. (1) The definition of certain valuation pairs can be weakened. Let (A, P) be such that A is a subring of R whose total quotient ring is R, P a regular prime ideal of A, and for all regular $x \in R \setminus A$, there exists $y \in P$ such that $xy \in A \setminus P$. Then (A, P) is a valuation pair of R, for if $z \in R \setminus A$, then there exists $w \in P$ such that z+w is regular. Then $z+w \in R \setminus A$ implies the existence of $y \in P$ such that $(z+w)y \in A \setminus P$. Hence $zy \in A \setminus P$. The existence of the $w \in P$ such that z+w is regular follows by an argument similar to that used by Davis [3, Lemma B, p. 204] and using the fact that P is a regular ideal of A.

- (2) A similar result is true for regular valuation preprimes. Let S be a regular preprime such that $-S \subseteq S$, the total quotient ring of S:S is R, and for any finite set E of regular elements of R such that $S \cap E = \emptyset$, there exists a finite prime P of R such that $S \subseteq P$ and $P \cap E = \emptyset$. Let $E = \{e_1, \dots, e_n\}$ be any subset of R. Then there exists $u_1, \dots, u_n \in S$ such that $\{e_1 + u_1, \dots, e_n + u_n\}$ is a set of regular elements disjoint from S. Hence there exists a finite prime P such that $S \subseteq P$ and $e_i + u_i \notin P$ for $i = 1, \dots, n$. But then $e_i \notin P$ for $i = 1, \dots, n$, so S is a valuation preprime.
- (3) The ordering on the set of all pairs (A, P) where A is a subring of R and P a prime ideal of A is $(A_1, P_1) \leq (A_2, P_2)$ if and only if $A_1 \subseteq A_2$ and $P_1 = P_2 \cap A_1$. Manis [6, Definition 1.8] has established that maximal pairs and valuation pairs of R are equivalent terms. For any regular valuation pair (A, P) of R, we have $(A, P) \leq (A_{S(P)}, PA_{S(P)})$ where S(P) denotes the set of regular elements in the complement of P in A. Hence by the maximality of (A, P), P must be the unique maximal regular ideal of A [3, Lemma A, p. 204].
- (4) Let (A, P) be a valuation pair of R. For a regular element $x \in R$, if $x, x^{-1} \in R \setminus A$, then there exists $y, z \in P$ such that $xy, x^{-1}z \in A \setminus P$. Thus $yz \in P \cap (A \setminus P)$ which is impossible. Thus x or x^{-1} must be in A. Consequently when (A, P) is a valuation pair of R, A is a quasi-valuation ring [3, p. 203]. On the other hand, if A is a quasi-valuation ring and P is its unique maximal regular ideal, then Remark 1 shows that (A, P) is a regular valuation pair of R.

(5) Remark 4 and [3, Proposition 5, p. 205] imply that if (A, P) is a valuation pair of R and (B, Q) is a pair where B is a subring of R containing A and Q is the maximal regular ideal of B, then (B, Q) is a valuation pair of R and $B = A_{S(Q)}$.

PROPOSITION 1. Let $C \subset X^{\sharp}$ with $P = \bigcap C$ and A = P : P. Then (A, P) is a valuation pair of R.

PROOF. Let p be a regular element of P. Clearly A is a subring of R and P is an ideal of A. Suppose a, $b \in A$ with $a \notin P$, $b \notin P$, and $ab \in P$. Then there exist u, $v \in A$ such that c = a + up, d = b + vp are regular and $c \notin P$, $d \notin P$, and $cd \in P$. Hence $\{Q \in C \mid c \notin Q\}$ and $\{Q \in C \mid d \notin Q\}$ are nonempty open subsets of C whose intersection is empty contrary to the irreducibility of C. Thus P is a prime ideal of A.

Let $x \in R \setminus A$, x regular. Then since $x \notin A$ there exists $y \in P$ such that $xy \notin P$. There exists $u \in A$ such that y+up is regular and $u \in (A:x)$. [This is Davis' argument again using the fact that $A \cap (A:x)$ is a regular ideal of A.] Then $y+up=x^{-1}(x(y+up)) \in P$ and $x(y+up) \notin P$. An argument similar to the one above based on the irreducibility of C shows that the complement of P in R is closed under multiplication of regular elements. Hence $x^{-1} \in P$. Hence for x regular in $R \setminus A$, there exists $x^{-1} \in P$ such that $xx^{-1} \in A \setminus P$. By Remark 1 this proves that (A, P) is a valuation pair of R. Note that $x^{-1} \in A$ for all regular $x \in R \setminus A$ implies that the total quotient ring of A is R.

PROPOSITION 2. If (A, P) is a valuation pair of R, then P is a valuation preprime of R.

PROOF. Let E be a finite set with $P \cap E = \emptyset$. Let $E = E_1 \cap E_2$ where $E_1 = \{e_1, \dots, e_s\} \subseteq A$ and $E_2 = \{e_{s+1}, \dots, e_r\} \subseteq R \setminus A$. For $i = s+1, \dots, r$, there exist $t_i \in P$ such that $e_i t_i \in A \setminus P$. Let $E' = \{e_1, \dots, e_s, e_{s+1} t_{s+1}, \dots, e_{rt_r}\}$. Then $E' \subseteq A$ so $E' P \subseteq P$. By [4, Lemma 2.6, p. 21], there exists a finite prime Q of R such that $P \subseteq Q$ and $Q \cap E' = \emptyset$. Thus $E_1 \cap Q = \emptyset$ and for $i = s+1, \dots, r$, $e_i t_i \in Q$ and $t_i \in Q$ imply that $e_i \notin Q$ so $E_2 \cap Q = \emptyset$. Thus $E \cap Q = \emptyset$.

For a valuation preprime P of R, let $C_P = \{Q \in X \mid P \subseteq Q\}$.

PROPOSITION 3. If P is a valuation preprime of R and $\bigcap C_P$ is regular, then C_P is a closed irreducible subset of X.

PROOF. The irreducibility follows readily. To see that C_P is closed note that C_P is the complement of

$$U\{Q \in X \mid \{x\} \cap Q = \emptyset \text{ for some regular } x \in P\}.$$

One inclusion is clear; for the other, note that for $Q \oplus C_P$, there exists

 $x \in P$, $x \notin Q$. If p is a regular element of $\bigcap C_P$, then there is a $u \in P:P$ such that x+up is regular, $x+up \in P$, $x+up \notin Q$. Therefore Q is not in the complement mentioned above.

PROPOSITION 4. If P is a regular valuation preprime of R, then $P = \bigcap C_P$.

PROOF. Clearly $P \subseteq \cap C_P$. Let $x \in R \setminus P$ and let A = P : P. If $x \in A \setminus P$, then there exists $Q \in C_P$ such that $x \notin Q$; hence $x \notin \cap C_P$. On the other hand, $x \in R \setminus A$. By Proposition 3 C_P is a closed irreducible subset of X. Thus by Proposition 1 (A, P) is a valuation pair of R. Hence there exists $y \in P$ such that $xy \in A \setminus P$. Hence there exists $Q \in C_P$ such that $xy \notin Q$. But $y \in P \subseteq Q$ implies $x \notin Q$. Hence $x \notin \cap C_P$.

3. Relationship to integral closure. In this section we show that the integral closure of a ring has the same characterization as in the classical setting. First a lemma.

LEMMA 1. Let T be a subring of R, I a proper regular ideal of T. Then there exists a valuation pair (A, P) of R such that $I \subseteq P$.

PROOF. Consider the set of all pairs (A, P) where A is a subring of R and P is a prime ideal of A containing I. This inherits the ordering discussed in Remark 3 and in this ordering has a maximal element which is also maximal in the set of all such pairs with no restriction regarding I. Hence this maximal element is a valuation pair satisfying the assertion of the lemma.

THEOREM 2. For any subring A of R whose total quotient ring is R, the integral closure \overline{A} of A is

$$A^* = \bigcap_{\alpha} \{ A_{\alpha} | (A_{\alpha}, P_{\alpha}) \text{ is a valuation pair of } R, A \subseteq A_{\alpha} \}.$$

PROOF. $\overline{A} \subseteq A^*$ since each A_α is integrally closed [6, Proposition 1.9]. Now let $x \in R \setminus \overline{A}$, x regular. Then x^{-1} is not a unit in $A[x^{-1}]$, for if it were, then $x = a_0 + a_1 x^{-1} + \cdots + a_s x^{-s}$ for $a_0, a_1, \cdots, a_s \in A$ which would violate $x \notin \overline{A}$. Thus $x^{-1}A[x^{-1}]$ is a proper ideal of $A[x^{-1}]$. Thus, by Lemma 1, there exists a valuation pair (B, P) of R such that $x^{-1}A[x^{-1}] \subseteq P$. Since $x^{-1} \in P$, $x \notin B$. Thus the regular elements of A^* belong to A. Hence by [3, Lemma C, p. 205] $A^* \subseteq \overline{A}$.

4. An approximation theorem for valuations. The following definitions and results are due to Manis [6, Proposition 1.6]. Let (A, P) be a valuation pair of R. For x, $y \in R$, set $x \sim y$ if and only if P:(x) = P:(y). Let $V(x) = \{y \in R \mid y \sim x\}$ and $\Gamma_v = \{V(x) \mid x \in R\}$. Then $\Gamma_v \setminus V(0)$ is a group with identity $V(1) = A \setminus P$ and composition

V(x) V(y) = V(xy) for all $x, y \in R$. Define V(x) < V(y) if there exists $z \in R$ such that $xz \in P$ and $yz \in A \setminus P$. Then < is a linear order on Γ_V , $\Gamma_V \setminus V(0)$ is an ordered group, and $V(x+y) \le \max \{V(x), V(y)\}$ for all $x, y \in R$.

We use these facts to prove an approximation theorem for valuations. The approach here imitates that of [2, p. 132-136]. Again, if P is a prime ideal of a ring A, S(P) denotes the set of regular elements in the complement of P in A. Using the previous remarks, [5, Lemma 3.1] may be restated as

THEOREM 3. Let $\{(A_i, P_i)\}_{i=1,\dots,n}$ be a set of regular valuation pairs of R. Let $A = \bigcap_{i=1}^n A_i$ and set $Q_i = P_i \cap A$ for $i = 1, \dots, n$. Then $A_i = A_{S(Q_i)}$ for $i = 1, \dots, n$ is the set of maximal regular ideals of A.

LEMMA 2. Let (A, P) be a valuation pair of R, M a proper regular ideal of A, and $N = \sqrt{M}$. Then N is a prime ideal of A.

PROOF. Let V be the valuation defined by (A, P) and let m be a regular element of M. Let $x, y \in A$ with $xy \in N$. There exist $u, v \in A$ such that s = x + um, t = y + vm are regular. Then $st \in N$ so $(st)^n \in M$ for some positive integer n. If $V(s) \ge V(t)$, then $V(ts^{-1}) \le V(1)$, so $t \in sA$. Hence $t^{2n} \in s^n t^n A \subseteq M$ which proves that $t \in N$.

Following [2, Definition 1, p. 134] we say two valuation pairs (A_1, P_1) and (A_2, P_2) of R are dependent if the ring generated by A_1 and A_2 is properly contained in R. Since R has few zero divisors, this is equivalent to the existence of a valuation pair (A, P) of R such that for $i=1, 2, A \supseteq A_i \supseteq P_i \supseteq P \supseteq V_i^{-1}(0)$ where V_i is the valuation associated with (A_i, P_i) . This second form of this definition is the one used by Manis [6].

THEOREM 4. Let $\{(A_i, P_i)\}_{i=1,\dots,n}$ be pairwise independent valuation pairs of R with valuations V_i and groups $\Gamma_i \setminus \{V_i(0)\}$. For $x_1, x_2, \dots, x_n \in R$ and $\alpha_i \in \Gamma_i \setminus \{V_i(0)\}$ for $i = 1, \dots, n$, there exists $x \in R$ such that $V_i(x-x_i) \leq \alpha_i$ for $i = 1, \dots, n$.

PROOF. We may assume that each V_i is proper. Let $A = \bigcap_{i=1}^n A_i$ and $Q_i = A \cap P_i$. Since the total quotient ring of A is R, there exist $a, s, a_1, \cdots, a_n \in A$, s regular, such that $x_i = a_i/s$ and x = a/s. Then $V_i(a - a_i) \le \alpha_i V_i(s)$ for all i will imply the result. Hence we may assume that $x_1, \cdots, x_n \in A$. Also we may assume that $\alpha_i < V_i(1)$ for all i. Let $M_i = \{z \in R \mid V_i(z) \le \alpha_i\}$ and set $N_i = M_i \cap A$. For $x \in A$, $V_i(x - x_i) \le \alpha_i$ is equivalent to $x = x_i \pmod{N_i}$. Thus it suffices to show that the canonical map $A \to \prod_{i=1}^n A/N_i$ is onto; i.e., that the N_i are pairwise

comaximal [1, Proposition 5, p. 72]. By Theorem 3, Q_1, \dots, Q_n are the maximal regular ideals of A. Thus it suffices to show that $N_i \subseteq Q_j$ for $i \neq j$.

Suppose that $N_i \subseteq Q_i$ for some $i \neq j$. Using Lemma 2 one sees that $N = \sqrt{N_i}$ is a prime ideal of A so that $N \subseteq Q_i$. Also since $\alpha_i < V_i(1)$, $N_i \subseteq Q_i$ so that $N \subseteq Q_i$. Hence $A_i = A_{S(Q_i)} \subseteq A_{S(N)}$ and similarly $A_j \subseteq A_{S(N)}$. Each M_i contains a regular element, for let $u \in R$ be such that $V_i(u) = \alpha_i$. Then $V_i(w) = \alpha_i^{-1}$ for some $w \in R$, say w = x/y with $x, y \in A$, y regular. Let p be a regular element of P_i . Then $wu \in A_i \setminus P_i$ and $wyp \in P_i$ showing that $V_i(yp) < \alpha_i$; i.e., that $yp \in M_i$. By [1, Proposition 10, p. 89] $M_i = N_i A_{S(Q_i)}$, so N_i must contain a regular element; therefore N does too and hence $A_{S(N)} \neq R$. This contradicts the independence of A_i and A_j .

REFERENCES

- 1. N. Bourbaki, Algèbre commutative, Chapters 1 and 2, Actualités Sci. Indust., No. 1290, Hermann, Paris, 1961.
- 2. ——, Algèbre commutative, Chapters 5 and 6, Actualités Sci. Indust., No. 1380, Hermann, Paris, 1964.
- 3. E. D. Davis, Overrings of commutative rings. II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196-212.
- 4. D. K. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc., No. 68, (1966).
- 5. Max D. Larsen, Some containment relations between classes of regular ideals in a ring with few zero divisors, J. Sci. Hiroshima Univ. Ser. Math. A-I 32 (1968), 241-246.
- 6. Merle Manis, Valuations on a commutative ring, Ph.D. Thesis, Univ. of Oregon, Eugene, 1966.

University of Nebraska

² The author has learned that Malcolm Griffin has obtained Remark 4 and Theorem 2 independently in a paper to appear in J. Reine Angew. Math.