
SOME TYPES OF BOREL MEASURES

ROY A. JOHNSON

1. Introduction. Let X be a locally compact Hausdorff space. Our

definitions of Baire sets, Borel sets, Borel measures and regular Borel

measures are those of [2]. All measures considered here will be non-

negative Borel measures on X, and p, v, and X are reserved for such

measures. (Recall Borel measures in [2] are always c-finite.) In §2

we show that given a Borel measure p, we may distill from p a largest

regular measure po such that ¿u=Mo+Mi- The residual measure pi will

not only fail to be regular; it will be singular with respect to all regu-

lar Borel measures on X. A Borel measure p will be called monogenic

if the only Borel measure agreeing with p on Baire sets is p itself.

In §3 we show that given a Borel measure p, we may distill from p

a largest monogenic measure p0.

We use the concepts of singularity (pl-v) and absolute continuity

(j«ju) extensively. The definitions are those of [2, pp. 126 and 124].

The following properties will be used implicitly and explicitly:

1. If p«/* and XL/*, then \±v.
II. If v<£p and v±p, then v = 0 [2, Exercise 30.9].

III. If p^v+\ and M-LX, then p^v.
IV. If ju±X and v±\, then (p+v)±\ [2, Exercise 30.10].

V. If pn(E)—>p(E) for each Borel set E and if u„±v for each n,

then ju_Lj\

VI. If (1) pa(E) -[>(£) for each Borel set E, (2) pa±v for each a

and (3) p or v is regular, then pA.v [3, 3.1 and 3.3]. Hence, if (1)

p = 23m« or p = Mpa (the smallest measure^each pa), (2) paA.v for

each a and (3) p or v is regular, then pA-v.

VII. Lebesgue decomposition theorem (e.g.[3, 3.4]). Suppose p and

v are Borel measures on X and that p or v is regular. Then there exist

unique Borel measures ju0 and jui such that p=Po+V\, where po<&.v

and pil-v.
Although properties I-V hold for abstract (not necessarily Borel)

measures, properties VI and VII do not always hold, even for (r-finite

measures. (It is understood that "each Borel set E" is replaced by

"each measurable set E" in V and VI.) I do not know if the regular-

ity of p or v is essential in VI and VII.

2. Regular and antiregular measures. If p and v agree on all Baire
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sets, we say that ß and v are Baire relatives or simply relatives. If ju is

a Borel measure, then its restriction to the Baire sets is a Baire mea-

sure which can be extended to a unique regular Borel measure ¿u'

[2, 54.D]. Clearly ß' is a relative of ß, which we may call the regular

relative of ß. Of course ß=ß' if and only if ju is regular. Finally, we

say that ß is antiregular if and only if ß±.v for each regular measure v.

Evidently the only measure which is both regular and antiregular is

the zero measure.

Our first theorem follows immediately from the definition of anti-

regular measures and the properties of singularity listed earlier.

Theorem 2.1. Let 31 be the class of all antiregular Borel measures on

X. Then:

1. 7/p«/¿ and ju£9l, then p£3l.

2. If ß, ^£91, then so are ß+v and ß W.

3. If ß„(E)^ß(E) for each Borel set E and if jttn£3l/or each n, then
ju£3l.

4. If ßaE^ for each a and if the Borel measure ß can be written as

Em« or Vju« (the smallest measured each ßa), then ¿t£9l.

Theorem 2.2. If ß±ß', where ß' is the regular relative of ß, then ß is

antiregular.

Proof. Suppose v is a regular Borel measure on X. Then by the

Lebesgue decomposition theorem, we may write ß=ß0+ßi, where

ßo^v and ßiLv. Then ß0 is regular [2, Exercise 52.9]. Now if ß{ and

ß' are the regular relatives of ßi and ß, respectively, then it is easy

to see that m'=Mo+Mi . so that ß0^ß'. But since ß-Lß', it follows that

ßo = 0, and we are done.

Theorem 2.3. If ß is any Borel measure, then there exist unique reg-

ular ßo and antiregular ßi such that ß=ß0+ßi.

Proof. Let ß' be the regular relative of ß. By the Lebesgue decom-

position theorem we have m=A1o+Mi> where ju0<3Cm' and ßiLß'. Neces-

sarily, ßo is regular. We show that ui is antiregular. For, let ßi be

the regular relative of ßi. It is clear that ß' =ßo+ßl, so that ß{ ^ß'.

Since ßiLß', we have ßiA-ß{, which shows that ßi is antiregular.

To prove uniqueness, suppose ß=ßi+ß3, where ß2 is regular and ß3

is antiregular. Since ßouß and Mo-L/x3, we have Uoußi by property

III in the Introduction. Similarly, ju2^jUo, so that juo=M2 and ßi=ß3.

Theorem 2.4. 4 Borel measure ß is antiregular if and only if there

exists a locally Borel set A (i.e. EC\A is Borel for each Borel set E)



96 R. A. JOHNSON [July

such that p(E—A) =0 for all Borel sets E and such that p(C) =0 for
each compact set CQA.

Proof. Suppose p is antiregular. Then pLp', where p' is the regular

relative of p. Hence there exists a locally Borel A such that p(E—A)

= Q=p'(Ef~\A) for each Borel set E. Now if C is a compact subset

of A, evidently p'(C) =0. Since there exists a compact G¡ set D such

that p'(C) =p'(D) [l, 59.1], we have 0=p'(D)=p(D)^p(C), so that

p(C)=0.
On the other hand, suppose there exists such an A as described

above. We know that p =po+Pi, where p0 is regular and pi is antiregu-

lar, so that it suffices to show that p0 = 0. Suppose to the contrary that

Pa(E) >0 for some Borel set E. Then po(E(~\A) >0 and by regularity

of po there exists a compact CQEi~\A such that po(C) >0. Of course

ju(C)>0 in this case, and that is impossible since CQA.

Theorem 2.5. If p is antiregular, then p({x}) =0 for each xQX.

Proof. For each xQX, let vx(E) = 1 or 0 according to whether xQE

or 3Cf|£. Then vx is a regular measure, so that pl.vx. It follows that

M({*})=0.

3. Monogenic and antimonogenic measures. We shall say that a

Borel measure p is monogenic if the only relative of p is p itself (cf.

[l, p. 231]). Such a measure is necessarily regular. We shall say that

a Borel measure p is antimonogenic if p is singular with respect to

every monogenic measure. Then Theorem 2.1 holds if 91 is taken to

be the class of antimonogenic measures.

Evidently the only measure which is both monogenic and anti-

monogenic is the zero measure. It is also clear that every antiregular

measure is antimonogenic. But there are antimonogenic measures

which are not antiregular. Indeed, a necessary and sufficient condi-

tion for a Borel measure to be antimonogenic is that it have an anti-

regular relative. We prove the sufficiency now.

Theorem 3.1. If p has an antiregular relative, then p is antimono-

genic.

Proof. We wish to show that if X is monogenic, then juJ_X. We con-

sider first the case in which p is regular. If D is a Baire set, we define

a measure ¿iz> by pd(E) —p(E(~\D) for each Borel set.E. By hypothesis,

p has an antiregular relative v, and it is clear that pd and vD are rela-

tives since D is a Baire set.

Now suppose D is a fixed Baire set. By the Lebesgue decomposition

theorem we may write X=X0+Xi, where Xo«jUz> and XiJLjuB. By the
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Radon-Nikodym theorem, there exists a Borel function / such that

Xo(7i) =Jsf dßD for each Borel set E. Since juz> is regular, we may

assume that/ is a Baire function [l, 68.1 ]. Define X2(7£) =Jef dvn for

each Borel set E. Since \2<&, we have X2 is antiregular. Since / is a

Baire function and since ßo and vo are relatives, it follows that X0

and X2 are relatives [l, 66.1 ]. Since X=X0+Xi and X2+X1 are rela-

tives and since X is monogenic, we have X = X2+Xi. But since X is reg-

ular and X2 is antiregular, we have X=Xi, so that \LßD.

The measures ub are increasingly directed in the obvious sense,

and /¿ = LUB ßo- Since ßDÜ\ for each Baire set D, we have ¿*±X.

This completes the case where ß is regular.

Now suppose ß is not necessarily regular. Since ß has an antiregular

relative, so does ß', where ß' is the regular relative of ju- Hence ß' is

antimonogenic. Now ju=Mo+Mi> where u0 is regular and ßi is anti-

regular. Since ßo^ß' and u' _LX, whenever X is monogenic, we have

ßo LX. Of course ßi JLX, so that (mo+Mi) LX, as was to be shown.

Lemma 3.2. If ß is not monogenic, then there exists a nonzero X such

that \^ß and such that X has an antiregular relative.

Proof. If u is not regular, the conclusion is clear. We may assume

ß is regular. Then ß has a nonregular relative, v. We may write

v = vo+Vi, where v0 is regular and vi is antiregular. If X is the regular

relative of V\, then Vo+\=ß, so that X will serve as the required

measure.

Theorem 3.3. If ß is a Borel measure, then there exist Borel measures

ßo and ßi such that ßo is monogenic, ßi has an antiregular relative (and

hence is antimonogenic) and such that ß=ß0+ßi. The requirement that

ßo and ßi be monogenic and antimonogenic, respectively, determines

them uniquely.

Proof. If ß is monogenic, we are done. Otherwise there exists non-

zero X^u such that X has an antiregular relative. Now let us say that

a family of measures {ju„} is admissible if

(1) juais nonzero for each a,

(2) ßa has an antiregular relative va for each a, and

(3) YjV«uß-
Let us order the (nonempty) collection of admissible families by in-

clusion. By Zorn's lemma there exists a maximal admissible family,

which we label {ßa}- Let ui= Em<o and let ß0 be that unique mea-

sure such that ß=ßo+ßi.

If, for each a, va is an antiregular relative for ßa, then E*7« is easily

seen to be an antiregular relative of jui = ^2ßa. Also ßo is monogenic in
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view of Lemma 3.2 and the maximality of the family {pa}- The

uniqueness argument is the same as that in Theorem 2.3, and we

omit it.

Theorem 3.4 (Converse of Theorem 3.1). If p is antimonogenic,

then p has an antiregular relative.

Proof. Suppose p is antimonogenic. We have p=po+Pu where p0

is monogenic and pi has an antiregular relative. Since P-Lpo, we have

p=Pi.

Theorem 3.5. A Borel measure p is monogenic if and only if it is

singular with respect to every antimonogenic measure.

Proof. We prove sufficiency. Suppose p is singular with respect to

every antimonogenic measure. We have p=p0+pi, where po is

monogenic and pi is antimonogenic. Since pJ-Pi, we have p=po-

In view of Theorem 3.5, we see that Theorem 2.1 holds if we take

91 to be the class of monogenic measures.

4. Examples. Let I be any uncountable set, and let X = 2l be the

space of all functions from / into the discrete space of two elements,

with the product topology. If xQX, then x can be written as Xb, the

characteristic function of some BQI. Now if xaQX and p is the Borel

measure on X such that p(E) = 1 or 0 as x0QE or x0^E, then p is

antimonogenic. Indeed, there exist uncountably many mutually

singular Borel measures va such that va({x0})=0 and such that

va(U) = 1 if Z7 is an open set containing x0. Such measures are easily

seen to be antiregular relatives of p.

We show the existence of such measures vA for the case x0 = 0. (An

obvious translation handles the general case.) Suppose A is an un-

countable subset of /. Let

Sa = {xb Q X:B Q A    and    A — B is countable}.

If £ is a Borel set, let va(E) — Hi E(~\Sa contains a set F such that F

is closed with respect to the relative topology on Sa, and such that

given xbQSa, there exists xoQP for which CQB. Otherwise let

vA(E)=0. Using reasoning similar to that of [2, Exercise 52.10], it

can be seen that vA has the properties described above. Incidentally,

Vao.) and vAm are distinct if and only if ^4(1)A^4(2) is uncountable;

and when this happens vA(i) and j>a(í) are in fact singular.

Does there exist an antimonogenic Borel measure (or equivalently,

an antiregular one) such that each open set has positive measure?

The answer is yes, as we now show. Let I = [O, 1 ], and let X = 2l. Such
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an X is separable, and we let {xn} be a countable dense subset. De-

fine ßn(E) = 1/2" or 0 according to whether xnEE or xn(£E. If

ju = Emti, then ß is antimonogenic since each ßn is antimonogenic. Of

course, each open set has positive measure since {xn} is dense.
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