SOME TYPES OF BOREL MEASURES
ROY A. JOHNSON

1. Introduction. Let X be a locally compact Hausdorff space. Our
definitions of Baire sets, Borel sets, Borel measures and regular Borel
measures are those of [2]. All measures considered here will be non-
negative Borel measures on X, and g, », and \ are reserved for such
measures. (Recall Borel measures in [2] are always o-finite.) In §2
we show that given a Borel measure pu, we may distill from u a largest
regular measure po such that u=po+mp. The residual measure u; will
not only fail to be regular; it will be singular with respect to all regu-
lar Borel measures on X. A Borel measure p will be called monogenic
if the only Borel measure agreeing with p on Baire sets is u itself.
In §3 we show that given a Borel measure pu, we may distill from u
a largest monogenic measure .

We use the concepts of singularity (u.L») and absolute continuity
(v<<n) extensively. The definitions are those of [2, pp. 126 and 124].
The following properties will be used implicitly and explicitly:

I. If v&u and N Ly, then N L.

II. If »&u and » Ly, then »=0 [2, Exercise 30.9].

III. If u<y-+\and p L]\, then u=v.

IV. If gL X\ and » L\, then (u+») L\ [2, Exercise 30.10].

V. If p,(E)—u(E) for each Borel set E and if #,Lv for each =,
then p L.

VI. If (1) ua(E) T u(E) for each Borel set E, (2) paLv for each «
and (3) u or » is regular, then p_Lv [3, 3.1 and 3.3]. Hence, if (1)
= D e or p="Vu, (the smallest measureZeach u.), (2) paLlv for
each @ and (3) u or v is regular, then u Lv.

VII. Lebesgue decomposition theorem (e.g.[3, 3.4]). Suppose p and
v are Borel measures on X and that u or v is regular. Then there exist
unique Borel measures uo and p; such that p=pe+u, where uov
and u; L.

Although properties I-V hold for abstract (not necessarily Borel)
measures, properties VI and VII do not always hold, even for o-finite
measures. (It is understood that “each Borel set E” is replaced by
“each measurable set E” in V and VI.) I do not know if the regular-
ity of u or » is essential in VI and VII.

2. Regular and antiregular measures. If p and » agree on all Baire
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sets, we say that p and » are Baire relatives or simply relatives. If u is
a Borel measure, then its restriction to the Baire sets is a Baire mea-
sure which can be extended to a unique regular Borel measure u’
[2, 54.D]. Clearly u’ is a relative of , which we may call the regular
relative of p. Of course u=p' if and only if u is regular. Finally, we
say that u is antiregular if and only if u L» for each regular measure v.
Evidently the only measure which is both regular and antiregular is
the zero measure.

Our first theorem follows immediately from the definition of anti-
regular measures and the properties of singularity listed earlier.

THEOREM 2.1. Let N be the class of all antiregular Borel measures on
X. Then:

1. IfvKu and pEN, then vEN.

2. If u, vEN, then so are u+v and u V.

3. If u(E)—>u(E) for each Borel set E and if p,EN for each n, then
HEI.

4. If pa €N for each a and if the Borel measure u can be written as
> pa 0r Vi (the smallest measure = each o), then uE9N.

THEOREM 2.2. If u Ly, where u' is the regular relative of u, then u is
antiregular.

PRrOOF. Suppose v is a regular Borel measure on X. Then by the
Lebesgue decomposition theorem, we may write u=po+pui, where
pokr and py L. Then o is regular [2, Exercise 52.9]. Now if u{ and
w’ are the regular relatives of u; and p, respectively, then it is easy
to see that p’ =uo-+uf, so that uo<u’. But since u_L p’, it follows that
Ro=0, and we are done.

THEOREM 2.3. If u is any Borel measure, then there exist unique reg-
ular uo and antiregular py such that u=po+us.

ProOF. Let u’ be the regular relative of u. By the Lebesgue decom-
position theorem we have u =puo—+pu1, where po<Zu’ and u; L ', Neces-
sarily, wo is regular. We show that g, is antiregular. For, let u{ be
the regular relative of ;. It is clear that p/ =uo+uf, so that uf <p’.
Since py L u’, we have u; L pf, which shows that u, is antiregular.

To prove uniqueness, suppose u = us+us, where y, is regular and us
is antiregular. Since uo=p and poLlps, we have uo<p, by property
III in the Introduction. Similarly, us <u,, so that uo=pus and p; =ps.

THEOREM 2.4. A Borel measure p is antiregular if and only if there
exists a locally Borel set A (i.e. ENA is Borel for each Borel set E)
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such that u(E—A) =0 for all Borel sets E and such that u(C)=0 for
each compact set CCA.

Proor. Suppose p is antiregular. Then u L p/, where u’ is the regular
relative of u. Hence there exists a locally Borel 4 such that u(E—4)
=0=u'(ENA) for each Borel set E. Now if C is a compact subset
of A4, evidently u’(C) =0. Since there exists a compact G; set D such
that p/(C) =p/(D) [1, 59.1], we have 0=u’(D) =u(D) Zu(C), so that
u(C)=0.

On the other hand, suppose there exists such an 4 as described
above. We know that u = po+u1, where o is regular and p, is antiregu-
lar, so that it suffices to show that uo=0. Suppose to the contrary that
Ko(E) >0 for some Borel set E. Then uo(EMNA)>0 and by regularity
of o there exists a compact CCEMA such that ue(C) >0. Of course
p(C)>0 in this case, and that is impossible since CC 4.

THEOREM 2.5. If p is antiregular, then p({x}) =0 for each xEX.

Proor. For each x € X, letv.(E) =1 or 0 according to whether xEE
or xé E. Then v, is a regular measure, so that u Lv,. It follows that

p({x})=0.

3. Monogenic and antimonogenic measures. We shall say that a
Borel measure u is monogenic if the only relative of u is u itself (cf.
[1, p. 231]). Such a measure is necessarily regular. We shall say that
a Borel measure p is antimonogenic if p is singular with respect to
every monogenic measure. Then Theorem 2.1 holds if 91 is taken to
be the class of antimonogenic measures.

Evidently the only measure which is both monogenic and anti-
monogenic is the zero measure. It is also clear that every antiregular
measure is antimonogenic. But there are antimonogenic measures
which are not antiregular. Indeed, a necessary and sufficient condi-
tion for a Borel measure to be antimonogenic is that it have an anti-
regular relative. We prove the sufficiency now.

THEOREM 3.1. If u has an antiregular relative, then u is antimono-
genic.

Proor. We wish to show that if \ is monogenic, then p L X. We con-
sider first the case in which u is regular. If D is a Baire set, we define
a measure up by up(E) =u(END) for each Borel set E. By hypothesis,
p has an antiregular relative », and it is clear that up and vp are rela-
tives since D is a Baire set.

Now suppose D is a fixed Baire set. By the Lebesgue decomposition
theorem we may write N =Xo+X\;, where AoKup and M\ Lup. By the
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Radon-Nikodym theorem, there exists a Borel function f such that
Mo(E) = [&f dup for each Borel set E. Since pp is regular, we may
assume that f is a Baire function [1, 68.1]. Define M\y(E) = [gf dvp for
each Borel set E. Since N\;<<», we have A, is antiregular. Since f is a
Baire function and since up and vp are relatives, it follows that Ay
and \; are relatives [1, 66.1]. Since N=Xo+X\; and A+A; are rela-
tives and since N is monogenic, we have A =N;+\;. But since \ is reg-
ular and \; is antiregular, we have A=\, so that N L up.

The measures up are increasingly directed in the obvious sense,
and p=LUB pup. Since pp L\ for each Baire set D, we have p L\,
This completes the case where u is regular.

Now suppose u is not necessarily regular. Since u has an antiregular
relative, so does u/, where u’ is the regular relative of u. Hence p' is
antimonogenic. Now u=puo+p;, where uo is regular and y; is anti-
regular. Since po=p’ and u’ L\, whenever X is monogenic, we have
po L\, Of course w; L\, so that (uo+u1) LN, as was to be shown.

LEMMA 3.2. If u is not monogenic, then there exists a nonzero N such
that N S and such that \ has an antiregular relative.

Proor. If u is not regular, the conclusion is clear. We may assume
u is regular. Then u has a nonregular relative, ». We may write
v =vo+v;, where v, is regular and », is antiregular. If X is the regular
relative of v, then vo-+A=u, so that N will serve as the required
measure.

THEOREM 3.3. If u is a Borel measure, then there exist Borel measures
wo and uy such that uo is monogenic, py has an antiregular relative (and
hence is antimonogenic) and such that p=po+p1. The requirement that
wo and puy be monogenic and antimonogenic, respectively, determines
them uniquely.

Proor. If u is monogenic, we are done. Otherwise there exists non-
zero A =u such that\ has an antiregular relative. Now let us say that
a family of measures {u.} is admissible if

(1) ueis nonzero for each ¢,

(2) uo has an antiregular relative v, for each ¢, and

(3) ZuaZp.

Let us order the (nonempty) collection of admissible families by in-
clusion. By Zorn’s lemma there exists a maximal admissible family,
which we label { ua}. Let uy= D ka, and let uo be that unique mea-
sure such that p=puo+u.

If, for each e, v, is an antiregular relative for u,, then )_, is easily
seen to be an antiregular relative of u; = Y_u.. Also g is monogenic in
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view of Lemma 3.2 and the maximality of the family {pa}. The
uniqueness argument is the same as that in Theorem 2.3, and we
omit it.

THEOREM 3.4 (CONVERSE OF THEOREM 3.1). If u is antimonogenic,
then p has an antiregular relative.

ProOF. Suppose u is antimonogenic. We have u=puo+u1, where uo
is monogenic and y; has an antiregular relative. Since u L o, we have
=M.

THEOREM 3.5. A Borel measure p is monogenic if and only if it is
singular with respect to every antimonogenic measure.

Proor. We prove sufficiency. Suppose u is singular with respect to
every antimonogenic measure. We have u=po+u;, where uo is
monogenic and y; is antimonogenic. Since u 1 y;, we have u=p,.

In view of Theorem 3.5, we see that Theorem 2.1 holds if we take
9N to be the class of monogenic measures.

4. Examples. Let [ be any uncountable set, and let X =27 be the
space of all functions from I into the discrete space of two elements,
with the product topology. If x&X, then x can be written as 3, the
characteristic function of some BCI. Now if xo€ X and u is the Borel
measure on X such that u(E)=1 or 0 as xo&E or x&EE, then u is
antimonogenic. Indeed, there exist uncountably many mutually
singular Borel measures »4 such that v4({x,})=0 and such that
v4(U)=11if U is an open set containing x. Such measures are easily
seen to be antiregular relatives of u.

We show the existence of such measures v, for the case xo=0. (An
obvious translation handles the general case.) Suppose 4 is an un-
countable subset of I. Let

SA={XB€X:BCA and A—Biscountable}.

If E is a Borel set, let v4(E) =1 if ENS4 contains a set F such that F
is closed with respect to the relative topology on Sy, and such that
given xpES4, there exists x¢c&EF for which CCB. Otherwise let
v4(E) =0. Using reasoning similar to that of [2, Exercise 52.10], it
can be seen that v, has the properties described above. Incidentally,
vaq and v,y are distinct if and only if A(1)AA(2) is uncountable;
and when this happens v4qy and v, are in fact singular.

Does there exist an antimonogenic Borel measure (or equivalently,
an antiregular one) such that each open set has positive measure?
The answer is yes, as we now show. Let I = [0, 1], and let X =27. Such
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an X is separable, and we let {x.} be a countable dense subset. De-
fine p.(E)=1/2" or 0 according to whether x,EE or x,&E. If
K= D in, then p is antimonogenic since each u, is antimonogenic. Of
course, each open set has positive measure since {x,.} is dense.
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