RATIONAL COHOMOLOGY OPERATIONS
AND MASSEY PRODUCTS

DAVID KRAINES

Let @ be the group of rational numbers. Then H*(@, n; Q) is
either an exterior algebra or polynomial algebra on a class % of di-
mension #. By the Kiinneth formula, if P = Xj.,K(@, #,), that is if P
is a rational generalized Eilenberg-MacLane space (GEM), then
every class in H*(P; @) is a polvnomial on the fundamental classes
{uj}. Thus every rational primary cohomology operation on (xy,

-, Xs) can be written CIJ{xJ-} = > Nx;+ 2_¥2 when \;EQ and
Y., 2,EH*(P; @). The decomposable term is the twofold matrix
Massey product

/\(yl---yn) J>
%)/

In this paper we show that rational higher order cohomology opera-
tions can be expressed as a linear term plus a sum of matrix Massey
products. As a corollary we conclude that the only stable rational
cohomology operations are addition and scalar multiplication.

In defining a rational cohomology operation we recall the notion
of a rational Postnikov tower. Let Po= Xj.,K(@, n;) where ny, - - -,
n, are not necessarily distinct positive integers. We say that

P,

l”’m k.. '

Py — K(Q, jm)
=7 |

/ le \

l"':
k1
Py — K(Q, 1)

is an m+1 stage rational Postnikov tower if 1<;< - - - <jn and
P,Ir P, ; is the fibration induced from the path loop fibration over
K(@, j») by the map k.

Received by the editors September 20, 1968.
238



RATIONAL COHOMOLOGY OPERATIONS 239

For ® a Postnikov tower as above, set uj=w*uj, j=1, ..., s,
where u;EH"(P,; @) is the jth fundamental class of Py, and let
vEH*(Pn; @) where k2jn. Then the triple (®, {u,—}, v) is the uni-
versal example for a higher order cohomology operation ® defined as
follows. For a CW complex X and classes x;EH"(X; @), <I>{x,-} is
defined and contains yE H*(X; @) if and only if there is a map g: X
— P, such that g*u;=x;forj=1, - - - ,sand g*v=4y. If Visan arbi-
trary space, let f:X—Y be a weak homotopy equivalence from a
CW complex X to Y. Then we set <I>{y,~} =f*p {f*‘lyj} (see [1, p.
54-55]).

DEFINITION 1. We say that ® is a 1-connected rational cohomology
operation (of s variables and of degree k) if ® has a rational universal
example (@, {uj}, v) as described above where dim u;>1 for j=1,

-, s, and dim v=k.

LEMMA 2. Let P be a simply connected space whose rational cohomology
has finite type and such that QP has the homotopy type of a rational
GEM. Let o be the loop suspension homomorphism. Then every class in
Im ¢ is @ lincar combination of the fundamental classes of QP.

Proor. H*(QP; @) is a commutative, associative Hopf algebra
over @. By Lemma 4.17 of [5], the natural map from primitives to
indecomposables, PH*(QP, @)—QH*QP; Q), is a monomorphism.
As noted in the first paragraph, every class in H*(@QP; @) is a poly-
nomial on the fundamental classes of QP. The lemma now follows
since Im s CPH*(QP; Q).

LeEmMA 3. Let (@, {uj}, v) be the universal example for a 1-connected

rational cohomology operation. Then QP has the homotopy type of a ra-
tional GEM.

PRroOF. Since P is a rational GEM, so is QP,. Assume, inductively,
that QP,~LXK(@!, q) where Q! is t-dimensional rational vector
space, ¢=jn.11—1, and L is a rational GEM with no factor of degree
g. P41 is the fiber space induced by the map Q%:QP,—K(Q, ¢). Let
z be the fundamental class of K(@, ¢g). By Lemma 2, since (Q&)*(z)
€Im o, there is a map g:K(@Q%, ¢)—K(Q, ¢) such that (Qk)*(z)
=p*g*(2), and so Qk~gp, where p:QP,—K(Q", q) is the projection.
Thus if E is the fiber space induced by g, then QP,,;~LXE. It re-
mains to show that E has the homotopy type of a rational GEM.

Clearly the homomorphism g, :m(K(Qt, ¢))—m,(K(Q, q)) is
either 0 or an epimorphism. In the first case g itself is null homotopic,
so E~K (@', ¢) XK(@, ¢—1). In the second case the homotopy long
exact sequence for the fibration K(@, ¢—1)—E—K(@?, q) implies
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that 7;(E) =01if j#¢ and m,(E)=Q*'and so E=K(Q* !, q).

THEOREM 4. Let ® be a 1-connected rational cohomology operation de-
fined on {x,} EH*(X; Q). Then® {x,} = D Nx;+U, where \;EQ and
U is a sum of matrix Massey products.

Proor. Let (@, {uj}, v) be the universal example for ®. Then by
Lemma 3, QP,, has the weak homotopy type of a rational GEM. By
Lemma 2, ov is a linear combination of fundamental classes. Since
jm<k, these fundamental classes must come from QP,. Thus ov
= Z)\,ﬂu,-.

J. P. May (Corollary 18 [4]) has shown that the kernel of o is gen-
erated by matrix Massey products. Since v— Y _\u;EKer o, the
theorem follows by naturality.

Note that the entries of the matrices in a matrix Massey product
are not assumed to be taken from among the fundamental classes. For
example we could define a nontrivial Massey triple product of the
form <(u1, Ue, u;), Ug, u5>.

COROLLARY 5. Let 0 be a stable rational cohomology operation (see
[1, p. 64]). If 8 is defined on {xj in H*(X; @) where X is a connected
space, then we can write 0 {x,} = ) \x;for some\;EQ.

Proor. Since 6 is stable, there is a 1-connected rational coho-
mology operation ® such that sﬁ{xj} =<I’{sx,~} where s:HYX; Q)
— H"t1(SX; @) is the suspension isomorphism. By Theorem 4, we can
write <I>{sx,-} = Y \;jsx;+U. But U is a sum of matrix Massey prod-
ucts defined in H*(SX; @) and therefore, by the dual of Theorem
5[3], it is identically 0. Thus 0{x;} = > \x;.

ExaMmpPLE 6. Donald W. Kahn [2] has defined a class of secondary
cohomology operations with real coefficients which he calls the gen-
eralized double and triple products. We shall describe the analogue of
these operations in rational cohomology. Let &€ H?(X; @) and
vEHY(X; @) where p is even, ¢ is odd and uv=0. Note that #*=0.
Then the rational generalized double product (%, ), (n=1) is de-
fined and has dimension n(p+¢)+q—n.

The universal example for this operation is (P, {u, v} , W,) where P
is induced from the “cup product” pairing k

K(@p+g—1>P
I .

To define w, we examine the Serre spectral sequence of the above
fibration.
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an 1Q® x".

u ? u? uy u2y

In the above diagram, x is the fundamental class of K(@Q, p+g—1)
and dp;.x =uv. For dimension reasons it is clear that v®x” in E, sur-
vives to E,. We call w, the class it represents in H*®t0+e»(P; Q).

It can be shown that (u, v),C+tn!<v, ---, v, u">(n+1)v's.
For example let ¢ and b be cocycle representatives of # and v respec-
tively and let dc =ab. Then setting

@1 =02 =20, a3=0, a12=13@U10), a35=—c¢

we have a defining system [3] for (v, v, #) with related cocycle
ac—31(a\U1a)b. The class of this cocyle in E; is clearly v®x.

Thus these secondary operations are actually degenerate higher
order Massey products. The generalized triple products can be de-
scribed in a similar manner.
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