RATIONAL COHOMOLOGY OPERATIONS AND MASSEY PRODUCTS

DAVID KRAINES

Let Q be the group of rational numbers. Then $H^*(Q, n; Q)$ is either an exterior algebra or polynomial algebra on a class u of dimension n. By the Künneth formula, if $P = \times_{j=1}^s K(Q, n_j)$, that is if P is a rational generalized Eilenberg-MacLane space (GEM), then every class in $H^k(P; Q)$ is a polynomial on the fundamental classes $\{u_j\}$. Thus every rational primary cohomology operation on (x_1, \dots, x_s) can be written $\Phi\{x_j\} = \sum \lambda_j x_j + \sum y_r z_r$ when $\lambda_j \in Q$ and y_r , $z_r \in \tilde{H}^*(P; Q)$. The decomposable term is the twofold matrix Massey product

$$\left\langle (y_1 \cdot \cdot \cdot y_n) \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \right\rangle$$
.

In this paper we show that rational higher order cohomology operations can be expressed as a linear term plus a sum of matrix Massey products. As a corollary we conclude that the only stable rational cohomology operations are addition and scalar multiplication.

In defining a rational cohomology operation we recall the notion of a rational Postnikov tower. Let $P_0 = \times_{j=1}^s K(Q, n_j)$ where n_1, \dots, n_s are not necessarily distinct positive integers. We say that

$$P_{m}$$

$$\downarrow \pi_{m}$$

$$P_{m-1} \xrightarrow{k_{m}} K(Q, j_{m})$$
 $P = \pi \quad \downarrow$

$$\vdots$$

$$\downarrow \pi_{1}$$

$$P_{0} \xrightarrow{k_{1}} K(Q, j_{1})$$

is an m+1 stage rational Postnikov tower if $1 < j_1 \le \cdots \le j_m$ and $P_r \xrightarrow{\pi_r} P_{r-1}$ is the fibration induced from the path loop fibration over $K(Q, j_r)$ by the map k_r .

Received by the editors September 20, 1968.

For $\mathfrak O$ a Postnikov tower as above, set $u_j = \pi^* u_j', \ j = 1, \cdots, s$, where $u_j' \in H^{n_j}(P_0; \mathcal Q)$ is the jth fundamental class of P_0 , and let $v \in H^k(P_m; \mathcal Q)$ where $k \ge j_m$. Then the triple $(\mathfrak O, \{u_j\}, v)$ is the universal example for a higher order cohomology operation Φ defined as follows. For a CW complex X and classes $x_j \in H^{n_j}(X; \mathcal Q)$, $\Phi\{x_j\}$ is defined and contains $y \in H^k(X; \mathcal Q)$ if and only if there is a map $g: X \to P_m$ such that $g^*u_j = x_j$ for $j = 1, \cdots, s$ and $g^*v = y$. If Y is an arbitrary space, let $f: X \to Y$ be a weak homotopy equivalence from a CW complex X to Y. Then we set $\Phi\{y_j\} = f^*\Phi\{f^{*-1}y_j\}$ (see [1, p. 54-55]).

DEFINITION 1. We say that Φ is a 1-connected rational cohomology operation (of s variables and of degree k) if Φ has a rational universal example $(\mathfrak{O}, \{u_j\}, v)$ as described above where dim $u_j > 1$ for j = 1, \cdots , s, and dim v = k.

LEMMA 2. Let P be a simply connected space whose rational cohomology has finite type and such that ΩP has the homotopy type of a rational GEM. Let σ be the loop suspension homomorphism. Then every class in Im σ is a linear combination of the fundamental classes of ΩP .

PROOF. $H^*(\Omega P; \mathbf{Q})$ is a commutative, associative Hopf algebra over \mathbf{Q} . By Lemma 4.17 of [5], the natural map from primitives to indecomposables, $PH^*(\Omega P, \mathbf{Q}) \rightarrow QH^*(\Omega P; \mathbf{Q})$, is a monomorphism. As noted in the first paragraph, every class in $H^*(\Omega P; \mathbf{Q})$ is a polynomial on the fundamental classes of ΩP . The lemma now follows since Im $\sigma \subset PH^*(\Omega P; \mathbf{Q})$.

LEMMA 3. Let $(\mathcal{O}, \{u_j\}, v)$ be the universal example for a 1-connected rational cohomology operation. Then ΩP_m has the homotopy type of a rational GEM.

PROOF. Since P_0 is a rational GEM, so is ΩP_0 . Assume, inductively, that $\Omega P_n \simeq L \times K(\mathbf{Q}^t, q)$ where \mathbf{Q}^t is t-dimensional rational vector space, $q = j_{n+1} - 1$, and L is a rational GEM with no factor of degree q. ΩP_{n+1} is the fiber space induced by the map $\Omega k : \Omega P_n \to K(\mathbf{Q}, q)$. Let z be the fundamental class of $K(\mathbf{Q}, q)$. By Lemma 2, since $(\Omega k)^*(z) \in \mathrm{Im} \ \sigma$, there is a map $g: K(\mathbf{Q}^t, q) \to K(\mathbf{Q}, q)$ such that $(\Omega k)^*(z) = p^*g^*(z)$, and so $\Omega k \simeq gp$, where $p: \Omega P_n \to K(\mathbf{Q}^t, q)$ is the projection. Thus if E is the fiber space induced by g, then $\Omega P_{n+1} \simeq L \times E$. It remains to show that E has the homotopy type of a rational GEM.

Clearly the homomorphism $g_*:\pi_q(K(\boldsymbol{Q^t},q))\to\pi_q(K(\boldsymbol{Q},q))$ is either 0 or an epimorphism. In the first case g itself is null homotopic, so $E\simeq K(\boldsymbol{Q^t},q)\times K(\boldsymbol{Q},q-1)$. In the second case the homotopy long exact sequence for the fibration $K(\boldsymbol{Q},q-1)\to E\to K(\boldsymbol{Q^t},q)$ implies

that $\pi_j(E) = 0$ if $j \neq q$ and $\pi_q(E) = \mathbf{Q}^{t-1}$ and so $E = K(\mathbf{Q}^{t-1}, q)$.

THEOREM 4. Let Φ be a 1-connected rational cohomology operation defined on $\{x_j\} \in H^*(X; \mathbf{Q})$. Then Φ $\{x_j\} = \sum \lambda_j x_j + \mathfrak{U}$, where $\lambda_j \in \mathbf{Q}$ and \mathfrak{U} is a sum of matrix Massey products.

PROOF. Let $(\mathfrak{O}, \{u_j\}, v)$ be the universal example for Φ . Then by Lemma 3, ΩP_m has the weak homotopy type of a rational GEM. By Lemma 2, σv is a linear combination of fundamental classes. Since $j_m \leq k$, these fundamental classes must come from ΩP_0 . Thus $\sigma v = \sum \lambda_j \sigma u_j$.

J. P. May (Corollary 18 [4]) has shown that the kernel of σ is generated by matrix Massey products. Since $v - \sum \lambda_j u_j \in \text{Ker } \sigma$, the theorem follows by naturality.

Note that the entries of the matrices in a matrix Massey product are not assumed to be taken from among the fundamental classes. For example we could define a nontrivial Massey triple product of the form $\langle \langle u_1, u_2, u_3 \rangle, u_4, u_5 \rangle$.

COROLLARY 5. Let θ be a stable rational cohomology operation (see [1, p. 64]). If θ is defined on $\{x_j\}$ in $\tilde{H}^*(X; \mathbf{Q})$ where X is a connected space, then we can write $\theta\{x_j\} = \sum \lambda_j x_j$ for some $\lambda_j \in \mathbf{Q}$.

PROOF. Since θ is stable, there is a 1-connected rational cohomology operation Φ such that $s\theta\{x_j\} = \Phi\{sx_j\}$ where $s: H^n(X; \mathbf{Q}) \to H^{n+1}(SX; \mathbf{Q})$ is the suspension isomorphism. By Theorem 4, we can write $\Phi\{sx_j\} = \sum \lambda_j sx_j + \mathfrak{A}$. But \mathfrak{A} is a sum of matrix Massey products defined in $H^*(SX; \mathbf{Q})$ and therefore, by the dual of Theorem $S[\mathbf{A}]$, it is identically 0. Thus $\theta\{x_j\} = \sum \lambda_j x_j$.

EXAMPLE 6. Donald W. Kahn [2] has defined a class of secondary cohomology operations with real coefficients which he calls the generalized double and triple products. We shall describe the analogue of these operations in rational cohomology. Let $u \in H^p(X; \mathbf{Q})$ and $v \in H^q(X; \mathbf{Q})$ where p is even, q is odd and uv = 0. Note that $v^2 = 0$. Then the rational generalized double product $\langle u, v \rangle_n$ $(n \ge 1)$ is defined and has dimension n(p+q)+q-n.

The universal example for this operation is $(P, \{u, v\}, w_n)$ where P is induced from the "cup product" pairing k

$$K(Q, p+q-1) \xrightarrow{i} P$$

$$\downarrow \pi$$

$$K(Q, p) \times K(Q, q) \xrightarrow{k} K(Q, p+q).$$

To define w_n we examine the Serre spectral sequence of the above fibration.

In the above diagram, x is the fundamental class of K(Q, p+q-1) and $d_{p+q}x = uv$. For dimension reasons it is clear that $v \otimes x^n$ in E_2 survives to E_{∞} . We call w_n the class it represents in $H^{n(p+q)+q-n}(P; Q)$.

It can be shown that $\langle u, v \rangle_n \subset \pm n! < v, \cdots, v, u^n > (n+1)v's$. For example let a and b be cocycle representatives of u and v respectively and let $\delta c = ab$. Then setting

$$a_{1,1} = a_{2,2} = a$$
, $a_{3,3} = b$, $a_{1,2} = \frac{1}{2}(a \cup_1 a)$, $a_{2,3} = -c$

we have a defining system [3] for $\langle v, v, u \rangle$ with related cocycle $ac - \frac{1}{2}(a \cup_1 a)b$. The class of this cocycle in E_2 is clearly $v \otimes x$.

Thus these secondary operations are actually degenerate higher order Massey products. The generalized triple products can be described in a similar manner.

BIBLIOGRAPHY

- 1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
- 2. D. W. Kahn, Secondary cohomology operations which extend the triple product, Pacific J. Math. 13 (1963), 127-139.
- 3. D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449.
 - 4. J. P. May, The algebraic Eilenberg-Moore spectral sequence, (to appear).
- 5. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.

HAVERFORD COLLEGE