EXTENDING HOMEOMORPHISMS OF $S^p \times S^q$

RALPH TINDELL1

The purpose of this note is to characterize those homeomorphisms of $S^p \times S^q$ onto itself which are concordant to the identity, and then to use this to classify, up to concordance, those which extend to homeomorphisms of S^{p+q+1} , regarded as $\partial(B^{p+1} \times B^{q+1}) = S^p \times B^{q+1} \cup B^{p+1} \times S^q$. We work throughout in the PL category, as defined and explicated in either [2] or [4].

Recall that homeomorphisms f_0 , f_1 of $S^p \times S^q$ onto itself are said to be *concordant* (equivalently, weakly isotopic [3]) if there is a homeomorphism F of $S^p \times S^q \times I$ onto itself such that $F(x, i) = (f_i(x), i)$ for i = 0, 1. I = [0, 1] is the unit interval and we shall denote the identity function by 1. We will say that a homeomorphism of $S^p \times S^q$ onto itself is nice if it preserves orientation, extends to a homeomorphism of S^{p+q+1} , and induces the identity on $\pi_p(S^p \times S^q)$, where $1 \le p \le q$.

THEOREM 1. A homeomorphism h of $S^p \times S^q$ onto itself is nice if and only if it is concordant to the identity.

PROOF. The case p=q=1 follows from classical results, so we assume $q \ge p \ge 1$ and $q+p \ge 3$. Clearly homeomorphisms concordant to the identity are nice.

Suppose h is a nice homeomorphism of $S^p \times S^q$, and let $h': S^{p+q+1}$ $\rightarrow S^{p+q+1}$ be an extension of h; then h' maps each complementary domain onto itself. For p < q this is obvious, and for p = q it follows from the assumption that h induces the identity on $\pi_p(S^p \times S^q)$. Thus h' must also preserve orientation. Restricting h' to $S^p \times B^{q+1}$, it must induce the identity on $\pi_n(S^p \times B^{q+1}) = Z$; hence $h' \mid S^p \times 0$ is homotopic in $S^p \times B^{q+1}$ to the identity. Applying Zeeman's unknotting Theorem (Chapter 8 of [4], or Volume II of [2]), there is an isotopy $F: S^p$ $\times B^{q+1} \times I \rightarrow S^p \times B^{q+1} \times I$ such that $F_0 = 1$, $F \mid S^p \times S^q \times I = 1$, and $F_1h' \mid S^p \times 0 = 1$. Define $h'': S^{p+q+1} \rightarrow S^{p+q+1}$ by $h'' = F_1h' \cup h'$; that is, $h'' \mid S^p \times B^{q+1} = F_1 h'$ and $h'' \mid B^{p+1} \times S^q = h'$. Then h'' is an extension of h which is isotopic to h' by an isotopy preserving complementary domain, and such that h'' is the identity on the unknotted sphere $S^p \times 0$. According to Lemma 59, Chapter 8 of [4], there is an isotopy $G: S^{p+q+1} \times I \rightarrow S^{p+q+1} \times I$ from h'' to the identity such that $G \mid S^p$ $\times 0 \times I = 1$. Now both $S^p \times B^{q+1} \times I$ and $G(S^p \times B^{q+1} \times I)$ are regular neighborhoods of $S^p \times 0 \times I$ in $S^{p+q+1} \times I$ meeting the boundary regu-

Presented to the Society, April 13, 1968; received by the editors April 23, 1968.

¹ Supported in part by the National Science Foundation Grant GP-6613.

larly in the same set; by the uniqueness of regular neighborhoods [1], there is a homeomorphism H of $S^{p+q+1} \times I$ onto itself which is the identity on $S^{p+q+1} \times \partial I$ and such that $HG(S^p \times B^{q+1} \times I) = S^p \times B^{q+1} \times I$. Thus by restricting HG to $S^p \times S^q \times I$ we obtain a concordance from h to the identity, completing the proof of Theorem 1.

Notice that in the above proof HGF is a concordance from h' to the identity which preserves complementary domains. We exploit this to prove the following, which may be considered as a generalization of Theorem 3 of [3].

COROLLARY. If h is a homeomorphism of $S^p \times B^{q+1}$ onto itself whose restriction to the boundary $S^p \times S^q$ is concordant to the identity, then h is concordant to the identity.

We do not assume in this corollary that $p \leq q$. The proof is as follows: use a collar of $S^p \times S^q$ in $B^{p+1} \times S^q$ and the concordance from $h \mid S^p \times S^q$ to the identity to extend h to all of S^{p+q+1} . Then carry out the proof of Theorem 1; then, as remarked above, HGF restricts to a concordance on $S^p \times B^{q+1}$ from h to the identity.

The set of concordance classes of homeomorphisms of $S^p \times S^q$ onto itself forms a group under composition which we denote by $\operatorname{Conc}(S^p \times S^q)$. Let $G_{p,q}$ be the subgroup consisting of concordance classes of homeomorphisms which extend to S^{p+q+1} . Assume $p \ge 1$.

THEOREM 2. $G_{p,q}$ is isomorphic to Z_2+Z_2 if p < q, and $G_{p,p}$ is isomorphic to the dihedral group.

PROOF. Let $f\colon S^p{\to}S^p$, $g\colon S^q{\to}S^q$ be orientation reversals, and denote their conical extensions by $C(f)\colon B^{p+1}{\to}B^{p+1}$, $C(g)\colon B^{q+1}{\to}B^{q+1}$. Define α , $\beta\colon S^p{\times}S^q{\to}S^p{\times}S^q$ by $\alpha=f{\times}g$ and $\beta=f{\times}1$. We may define extensions of α , β to S^{p+q+1} by $\alpha'=f{\times}C(g){\cup}C(f){\times}g$ and $\beta'=f{\times}1{\cup}C(f){\times}1$. By examining their effect on orientation, or on $\pi_p(S^p{\times}S^q)$, one may see that no two of the homeomorphisms 1, α , β , $\alpha\beta=\beta\alpha$ are concordant. However, $\alpha\alpha$ and $\beta\beta$ are easily seen to be nice and hence concordant to the identity. This shows that the subgroup of ${\rm Conc}(S^p{\times}S^q)$ generated by α and β is isomorphic to Z_2+Z_2 ; but this subgroup is just $G_{p,q}$ if $p{<}q$, since one easily verifies that any extendable homeomorphism is concordant to either 1, α , β , or $\alpha\beta$ by noting that its composition with one of them must be nice, and hence concordant to the identity.

If p=q, we add another generator λ defined by $\lambda(x, y)=(y, x)$. Clearly λ is extendable, $\lambda\lambda=1$, and λ commutes with α ; however, $\lambda\beta$ and $\beta\lambda$ are not concordant since they induce different isomorphisms

of $\pi_p(S^p \times S^p)$. It is easy to check that α , β , λ generate a subgroup of $\operatorname{Conc}(S^p \times S^q)$ of order 8; since there are only five groups of order 8, it is easy to determine this group: it is not commutative, and has too many elements of order two to be the Quaternion group, so it must be the dihedral group. But α , β , λ generate $G_{p,p}$; to see this, note that 1, α , β , $\alpha\beta$, λ , $\lambda\alpha$, $\lambda\beta$, $\beta\lambda$ are all distinct, because they induce different automorphisms of $\pi_p(S^p \times S^p)$, and any extendable homeomorphism is concordant to one of them because its composition with one of them must be nice.

References

- 1. M. M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189-229.
- 2. J. F. P. Hudson, *Piecewise linear topology*, Univ. of Chicago Math. Lecture Notes, Chicago, 1967.
- 3. Nelson Max, Homeomorphisms of $S^n \times S^1$, Bull. Amer. Math. Soc. 73 (1967), 939-942.
- 4. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Etudes Sci., Paris, 1963, 1966.

University of Georgia