
ON THE CONVERGENCE OF BERNSTEIN POLYNOMIALS
FOR SOME UNBOUNDED ANALYTIC FUNCTIONS

P. c tonne

If/ is a function from [O, 1 ] to the complex numbers, « is a positive

integer, and 3 is a complex number, then

BÍ(z) = è/f>/n)C..,(l - z)n~V,

and Br„ is the Bernstein polynomial for f of order n. We prove the fol-

lowing:

Theorem. Suppose that A is a complex sequence, t>0, m is a non-

negative integer, \AP\ ^¡t(p + l)m for each nonnegative integer p, and f

is a function such that, for each complex number z with \z\ < 1, f(z)

= 2™=o ApZ", andf(\) is a complex number. Then the Bernstein poly-

nomial sequence B! has limit f on the unit disc and converges uniformly

on each closed subset of the unit disc (the set of all complex numbers with

modulus less than 1).

Bernstein polynomials were introduced by S. N. Bernstein [l] as

explicit uniform polynomial approximations for functions continuous

on an interval. Bernstein (see [2, p. 88]) demonstrated the conver-

gence of Bernstein polynomials for functions analytic on some open

sets containing [0, l], and the author has a result [3, Theorem l]

from which it follows that if a function is the limit of a power-series

about 0 which is absolutely convergent at 1, then the Bernstein poly-

nomials for the function converge uniformly to the function on the

closure of the unit disc.

G. G. Lorentz [2, p. 28] considers the Bernstein polynomials for

unbounded functions g where there is a positive number a and an

irrational number c in [O, l] such that, for each rational number x

in [O, l], g(x) = \x — c\~" and shows that, for almost all irrational

numbers c in [0, l], the corresponding Bernstein polynomials con-

verge, and that for uncountably many irrational numbers c, the cor-

responding Bernstein polynomials are unbounded at each number in

[O, l] except 0, 1, and c. It seems that little else is known about

Bernstein polynomials for unbounded functions.

Proof of Theorem. If F is a function from [0, l] to the complex

plane, F(l) =0, « is a positive integer, and z is a complex number,
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then (using the binomial theorem and interchanging order of summa-

tion)

BFn(z) = ¿ z'C,.p ¿ (-l)P+9Cp,gF(q/n)
j>—0 5—0

(1) = £ zCn.P £ (-Yf+qCp,qF(q/n)
p-0 4—0

+ z"2(-l)n+4C„.aF(?/«).
5-0

Using (1) and four lemmas, we demonstrate the convergence of the

Bernstein polynomials for the special functions defined in the next

paragraph. With this convergence we prove our theorem.

For each positive integer m let gm be a function such that for each

point z in the unit disc gm(z) = 1/(1—z)m and gm(l)=0. For each

positive integer m and each nonnegative integer p, the pth derivative

of gro is ¿f and g<? (0)/p\ = CP+m-i.m-i.

By the mean value formula for divided differences or by Theorems

A and Oof [3 ], we have

Lemma 1. If pis a nonnegative integer and m is a positive integer, then

V

lim C„,p £ (— 1)     Cp,qgm(q/n) = Cp+m-í¡m-i.

Lemma 2. If mis a positive integer and n is an integer greater than the

nonnegative integer p, then

o < cn.P £ (-Dp+,cp,qgm(q/n) = (p + D2m_1.
5-0

Proof. Let p be a nonnegative integer. For each nonnegative

integer m and each number z greater than p, let G(z) be Uj-o V(z —j)

and Hm(z) be Ya-o V(z-j')m- « z>P, then -G'(z)=G(z)Hl(z) and,

for each nonnegative integer m, Hf>)(z) — ( — l)mm\Hm+i(z) and

(_l)m+iGcm+i)(2) = (_1)«(-G')<m>(2) = (-l)m(G-Pi)<"»(z)

m

= (-l)mZcm,iG«(Z)P1(»'-*'(z)
fco.0

m

= Z C.lfc(-l)*G«)(8)(m - ¿)!Pm_i+1(Z).
t-o

By partial-fractions methods or by induction, it is shown that if

z>p then
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p\G(z) = i, (-ly+'C, P.5
î-o z — q

Then, by induction (differentiation), we see that, for each nonnega-

tive integer m and each number z greater than p,

(-l)m —G<m>(z) = ¿(-1)"+«C.
ml' ~os P'q (z — q)m+1

Let » be an integer greater than p.

« + 1 M
plC„+i,p(n + 1)G(« + 1) =-<-= p\Cn,pnG(n),

n + 1 — p     n — p

and, therefore, 0<p\Cn,PnG(n)^p\Cp+i,p(p + l)G(p + i)=p+l.

Suppose that m is a nonnegative integer such that if k is a nonnega-

tive integer not exceeding m then

p\
0 < (-1)* — Cn,p«*+1G«>(«) á (p + 1)M+1.

k\

Then,

P]-
(_i)m+i-£-Cn,pnm+2G^+»(n)

(m + 1) !

1 m 1 *' 1

= -—— £cm,*^(-l)*7-C».,»^GC*>(«)l
(w + l)U_o I *! ;

■(m-k) lnm-k+1Hm-k+i(n)

1 m p ^m—&+1

Ew!(i + ir'S
(w + 1) ! tTo f-o (n - j)m~k+1

\ m p
g-T,(p + i)m+h+i E (p + i)m-*+1 = (p + i)2m+3.

m + l k=o j-o

From the first step above we see that

p\
0 < (-l)ro+1-Cn,Pnm+2G<m+1Kn).

(m + 1)!

So, if m is a positive integer,

0 < Cn,p É (-l)p+5CPl5gm(i/«)
Î-0

pi
= Cn,p«m-(-l)m-1G<"'-1>(«) ú (p+ Y)2m~\

(m — 1) !
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Lemma 3. If each of m and n is a positive integer then

LTuly

£(-l)«+^n,igm(0/«)

4=0

< nm+l

Proof. Let m be a positive integer. Let <£ be a function from [O, 1 ]

to the numbers such that 0(0) =0 and if x is a positive number in

[0, 1] then

<p(x)

r m-l     ( —1)P 1

= *<! + £  -L-rL(ln*)4
I       p-\      Pl- )

<p is increasing (and continuous). </>(!) = 1.

£(-D1+tCi1(Ig.(o/i)

5-0

=   J   <   Jm+1.

Suppose that « is a positive integer and

£(-l)»+«C,.rf.(o/n)
5-0

< nm+l.

Then

¿(_1)n+l+9Cn+l3^/_^.N\

5-0 \» +  1/

= (n + 1)»

= (« + 1)"

+ (n+l!

= (n + 1)"

4- (« + 1)"

1
£(-i)^cn+1,s+1.
5-0 (q + 1)"

£(-l)*-"C„,5+1—Î—
5-0 (q + 1)"

£(-!Kn.5.        *
5-0 (q + 1)"

£(-l)«C..B-

n p 1

£(-i)ec., I x"d<p(x)
5=0 J 0

(n + l)m\n^\

-- £(-D»+'Cn,5gm(?/«)
5-0

+ (n+ l)m f   (1 - *)"á*(*)
J o

á (» + l)m-« + (» + l)m = (« + l)m+1.



i969] CONVERGENCE OF BERNSTEIN POLYNOMIALS 5

Without proof we state

Lemma 4. If each of b, c, and d is a complex sequence, 2™-o Icp|

converges, y,°_n | cpbp\ converges, and M is a complex matrix such that,

for each nonnegative integer p, limn-.«, Mnp = dp, and \ Mnp\ ^bP for

each positive integer n, then 23"-o I CA| converges andV

n-1

p.lim   23 cpMnp = 23 cpd.

From Lemma 4, Lemma 1, and Lemma 2 it follows that if 0<r<l

and m is a positive integer and \z\ =r then

n—1 p co

lim   X) zPCn,p 23 (-'i)p+qCP,qgm(q/n) - 23 ^Cp+m-i,m~i = gm(z),
n->»    p_o a—0 p=0

and the convergence is uniform for \z\ ¿r, so that by (1) and

Lemma 3 \imn-,aiB'nm(z)=gm(z), the convergence being uniform for

H=>.
For our last digression, we define a matrix Y, very closely related

to Sterling numbers of the first kind, such that if each of p and k is

a nonnegative integer, then

(we interpret 0° as 1) and note that rp+i,¡t+i = (p + Y)(Ypk+Yp+i,k);

Ypp = p\; Fpi = 0; Fpi = 0 for p>k; and, if « is a positive integer

Yp,k+in-k-1^:Ynkn-k; lim^«, F„i«-* = 1 ; and,  therefore,   Ynkn~k^i.

Now, let A, t, m, and/ be as in the theorem.

Let C be a closed subset of the unit disc. Let r be a number less

than 1 such that if z is in C then \z\ gr.

By (1), the power-series expansion for gm+i about 0, and our defini-

tion for Y, we see that if « is a positive integer, then

n—1 °° _, n—1

Bnm+\r) = ^r C„,P 23 Ck+m,mn   Ypk + r" 23 (—1)     C„,qgm+i(q/n),
p=0 k=p (¡=0

and

n—1 _ n—1 « .

Bn       (r)   =   23 r Cn.pCp+m.m«     ̂  ! + 23 r C" .P    23   Cfc+m,ro«      Fpi
.   . P-0 p-0 *-P+l

n-1

+ r  23 (~1)     C„,sfm+i(o/n).
g-0
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Now,

v
lim Bn+\r) = gm+i(r) = £ Cp+m,mr ,

and, by Lemma 4, as «—»<», the first term on the right side of (2) has

the same limit, namely £"»0 Cp+m,mrp, and the last term has limit 0

by Lemma 3. Hence the limit as «—>=o of the second term is 0, from

which it follows that the second term on the right of (3), below, has

limit 0, since, for each nonnegative integer k, \Ak\^t(k + l)m

¿t-m\-Ck+m,m.

If « is a positive integer and z is in C, then, by (1),

BÍ(z) = £ z'Cn„ £ Akn'hYpk + z" £ (-l)n+"CnJ(q/n),
j,—0 k=P 5-0

and

n— 1 n—1 °o

Bn(z) = J2zPCn.PApn "pl+ ^zPCn.P £ Akn   Ypk
.   . p-0 p-0 i-p+1

+ z" £ Akn\ Ynk - n} + z"f(l).
4=0

In (3), as «—*oo, the first term on the right, by Lemma 4, has limit

£?_0 ApZ"=f(z), and the second has limit 0. Also, if k is a nonnega-

tive integer, 0= Y„k — nk and [ ̂ 4fc| =i-«i!-Ci+m,m, and

r  £ C4+m,m«   { Ynk — n } = r  £ (—1)     C.jg^+ifo/w),
i-0 5-0

which by Lemma 3 has limit 0 as »—» °° so that the third term in (3)

has limit 0 as «—> <». The fourth term in (3) has limit 0 as «—> °°. The

convergence is uniform for z in C, and the theorem is proved.
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