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1. Introduction. In [2] Szekeres determined all the metabelian

groups of two generators and raised the question of whether a rule of

selection exists to determine all the nonisomorphic ones. In this paper

we find such a rule for the finite metacyclic groups. That is, we give

a rule to determine all the nonisomorphic extensions of a cyclic group

of order n by a cyclic group of order h.

Our approach uses strongly the defining relations of two extensions.

In §2 we give the notations, the isomorphism theorem, and the rule

that gives all the nonisomorphic groups. In §3 some preliminary

lemmas are proved. The theorem for the case of metacyclic ¿»-groups

is proved in §4 and a remark is made that reduces the proof to a

special pair of two metacyclic groups. The necessity and the suffi-

ciency of the conditions are proved in §5 and §6 respectively. In

particular we note in §6 that the isomorphism need not be of the first

kind as defined by Gol'fand [l].

2. Notations and main result. Let G be an extension of a cyclic

group of order n by a cyclic group of order h, i.e. G is a metacyclic

group. Then the defining relations of G — [a, b} are given by

an   -   0hg   _   1; gk  _,   ¿,*; oa  -   ar0>

where g| n, k = n/g, rh=l (mod n), and g \ r — 1. [Note that there is no

loss of generality in assuming that k\n, and hence k = n/g. For if k\n,

then replacing k by k0 = (k, n) and a by a", where x is a solution of

x = k/k0 (mod n/ko) and x=l(mod n'), n' the product of distinct

primes p such that p\n and p\n/ko, gives the above relations.]

Let H= {c, d} be another extension with the defining relations

cn   _   ¿hQ<   _   1( ct'   =   ¿hf ¿c  =   c„d

where g'\ n, k' = n/g', o-h^i (mod n), and g'|<r —1.

For any integer s let M (s) denote the multiplicative group of the

reduced residues modulo s. If (x, s) = l, let {x}, denote the cyclic

subgroup of M (s) generated by x. For the integer n above and any x

with (x, n) = 1, we let {x} „ = {x}. Let t be the order of {r} and for

any 5\n, let t, be the order of {r}„.

Now let s and s' be positive integers dividing n. We define an equiv-
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alence relation, s^s', with respect to h and r. For any prime p dividing

n let px\\n, i.e. px\n and px+1\n, pw\\h, pz\\s, and p*'\\s'. Then s~s' if

the following conditions are satisfied:

(i) If p9í2, then either ï^t+2 andx^7r-|-z' or z = z'.

(ii) If p = 2 and 41 r — 1, then the conditions are as in (i) above.

(iii) lip = 2, i r+1, and x<ir+z, then z=z'.

(iv) lip = 2, A r+1, 2I"'r||r + l, and x^tt+z, then z^l and z'gl.

(v) If p = 2, 4|r + l, 2x-*+1\r + l, andx^7r+z, then z=z'.

Note that in (iii), (iv), and (v) we only need the cases where z?§ 1

and z'<U.
Now we put the integers n, h, g, and g' in the canonical forms and

define some other integers.

Let n = J[px, h = f[p', g=Ij>. g' = Ij>'> v=Hplr-ipx, and
¡x = n/v. If a discussion is about a prime £, then the exponents x,

ir, • • • , will have the above meanings for this prime p. However,

whenever confusion is likely, we add a subscript, e.g., x = xp.

Leti7=v/2 when n = hg = 0 (mod 8), g — 2 = r+l = 0 (mod 4), and

2r\t„ and let t]=v otherwise. For p\v, let pu\\tv and pv\\t„. Finally let

01 = 2n(r'> - l)/(2-, »),       0, = (2, f,, fM) g)(r - 1),

Ö - ([[0i, A*]/«*, 02, *], n) = II #"»    and   x = ö/m-

Now we give the main result of this paper.

Theorem. Let G and 77 be given as above. Then G and H are isomor-

phic if and only if g^g', {r}v= {cr}„ and {r}e={<r}e.

We give the rule to determine all the nonisomorphic extensions of

a cyclic group of order n by a cyclic group of order h. Let L be the set

we get by taking a generator of every cyclic subgroup of M(n, h)

= {rEM(n)\rh=l (mod«)}. If i\n or 2\h let L'=L. If4|«and2|A
letL'={rG7| 4|r-l} and 7,"= {rG7.| 4|r + l}.

First, take the set 7/ and consider the equivalence relation between

the divisors of n where rEL'. [Note we may assume 4|r —1 for all

rEL' when L = L'. Hence the equivalence relation is defined by (i)

and (ii) only. ] Let 5 be the set of all smallest integers from each equiv-

alence class. [The smallest integer of an equivalence class divides

every other integer from the class and the reason for picking this

integer follows from the remark in §4.] For g E S let L'(g)

= {rG7'| g\r — l}. Pick an rEL'(g) and define integers r¡ and 6 as

above and eliminate all a's in L'(g) satisfying the conditions of the

theorem. Do this until every rEL'(g) is either picked or eliminated

for all g E S.
Second, take the set L", i.e. when 4|« and 2\h. Consider the
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equivalence relation on the divisors of n given by (i) and

(ii') If p = 2 then either z = z' = 0 or z=z' = l.

Let S' be the set of all smallest integers from each equivalence class.

For gES' let L"(g) = {r£L"| g\r-l}. If g is odd, then pick any

rEL"(g). If g is even, then pick rEL"(g) such that 2*_*'+1| r + i when

x^tt+I and any rEL"(g) when x<7r-fT. Now proceed as above for

all gES'.
The required nonisomorphic groups have the defining relations as

of G above where g runs over all elements of S and, if 4| n and 2| h,

over all elements of S' with the integers r selected as above.

3. Preliminary lemmas. The following lemmas are used extensively

in the proof of the theorem. Let p be a prime and r an integer.

Lemma 1. Let p9é2 and px\\r — 1 with x^l, or let p — 2 and either

2x\\r — 1 or 2*||r-r-l with x^2. Then px+y\\rp" — \ where y>0.

Lemma 2. Let R={r} be a cyclic subgroup of M(py) of order px. If

pr¿2, then r=l+py~x with O^x^y-1. If p = 2, then r=l+2v~x or

-l+2y-xfor2g:X^y-2 andr = l+2y-1, -i+2y~1, or -lforx=l.

Lemma 3. Assume the hypothesis of Lemma 1.

(i) If pw\r' — 1 where w>x, then pv~x\z.

(ii) If px\\r-l, p\z, and w>0, then pv'\\i+r+ ■ ■ ■ +rzpW-1.

(iii) If2x\\r + l,2\z, andw>0, then2a+x-1\\l+r+ ■ ■ ■ +rz2W-\

Lemma 4. Let (n,m) = \, {r}n of order t, and {o-}m of order r. Then

{<r'}nm is of order [t, r] where a' = r (mod n) and a' = o- (mod m).

Lemma 5. In Lemma 4 replace r and a by ra and rß respectively,

where (a, t) = (j3, r) = 1. Then {<r'}nm= {r} nm if and only if (t, r)\a— ß.

To prove Lemma 1, let r=l+zpx or — \-\-z2x, as suitable where

p\z. The result follows by considering the binomial expansion of rv"

for the given cases. The proofs of Lemmas 2 and 3 follow. For the

proofs of Lemmas 4 and 5 use the Chinese remainder theorem.

From this point on we fix our notations as given in §2. Let G'

and Z be the commutator group and the center of G respectively.

ThenG'= {ar_1} and is of order n'~n/(r — 1, n) andZ= \an', b'} and

is of order h(r — \, n)/t.

Lemma 6. // G^H then g~g', (r—1, «) = (<r —1, n), and {r} and
{a} are of equal order in M(n).

Proof. We only need to prove g-~g' since the others follow from

the note above. Assume g^g'. We take the different cases and show

that G and H are not isomorphic. For some prime p let x<7r-|-z' and

z<z'. Then H has an element, namely d, whose order is divisible by
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pT+''. Let m = nhg/px if 7r+z>x and m = nhg/p*+z if x^7r+x. Then

for any integer ß we have rßm=l (mod «). From the factorization of

the last congruence and Lemma 3 we have

1 + i* +-h r0<m-» b> 0    (mod n).

Also we have (aabß)m = 1 for all integers a and ß. Hence there exists no

element of G whose order is divisible by p*+z' and therefore G=f~H.

Now assume p = 2, x^t+1, 2x-T+1|r+l, 7r>0, and 0=z'^z = l.

From Lemma 3 we have 2X\ l+r+ • • • +r2ir_1. Hence the order of

a"bß is exactly divisible by 2T+1 if ß is odd. Assume it is possible to set

G= {aa¥, aW} such that the order of {aabß}r\{a5bi} is odd and

{aa&0} is normal of order n. Then 2| f and hence ß is odd. Hence we

only need to consider the case x=7r+l. It could be shown that the

normality of {a0^} implies that the 2-Sylow subgroup of G is qua-

ternion of order 8, a contradiction. This completes the proof of the

lemma.

Lemma 7. If {r} = {er} and g = g', then G=77.

Proof. Let o- = rs (mod n) where (s, /) = 1. Let ß be a solution of

ß = s (mod t) and ß= 1 (mod m') where m' is the product of the distinct

primes p, p\hg and p\t. Let a be the solution of a=ß (mod g) and

a=l (mod n') where «' is the product of the distinct primes p, p\n

and p\g. Then the map \p: 77—>G where \[/(c) =aa and ip(d) = bß is an

isomorphism.

4. Metacyclic ^-groups and a general remark. Let p be a prime and

let n = px,h = pir, and g = g' = £*, i.e. G and 77 are metacyclic ^-groups.

For p = 2, x^3, 7T^2, z = l, and 4|r + l let rj=n/2 =2x~\ otherwise

let r¡ = n = />*.

Lemma 8. Let G and H be p-groups as above. Then G=77 if and only

if{r}n=W},-

Proof. If p^2, the result is immediate from Lemmas 6, 7, and 2.

The same is true when p = 2 and 41 r — 1.

Now assume n = n/2, with the above conditions. If {r},= {o"}„

then either {r} = {a} or r + l=3o- + l+2I-1 = 0 (mod 2X). In the first

case G=77 from Lemma 7 and in the latter case ip: 77-^G, given by

\p(c) =ab2T~1 and \p(d) =b, is an isomorphism.

For the necessity, from Lemmas 6 and 2, we only need to consider

the case where r + 1 =a-\-l-\-2x~1 = 0 (mod 2X). Since g|r —1, z = 0or 1.

For x = 2, G and 77 are not isomorphic. Hence let x ^ 3. Assume G and

77 are isomorphic and the isomorphism \p : 77—>G is given by \f/(c) = aabß

and ip(d)=ahbî. These give two congruences (see §5). The first is

|3( — 2+2x-1) = 0 (mod 2"). The second, for the case where ß is even, is
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a(-l)f = a(-i + 2*"1) + 2x~'-'ß(-2 + 2*-1)    (mod 2X).

Assume z = 0. If ir> 1, then ß is even, f is odd and hence a is even

and aabß is of order at most 2*~K If x = 1 and ß = 0, then as above a is

even and aa¥ is at most of order 2I_1. If w = 1 and ß = 1, then (aa¥)2

= 1. Hence in these cases GzßH.

Assume z = 1. The only case left is when w = 1. But in this case G is

a generalized quaternion group and has only one cyclic subgroup of

order 2, namely {b2}. The subgroups {d2} and {cd} are distinct

subgroups of order 2 of H. Hence G^H, and the proof is complete.

Remark. We make a note on the general case. Using the integer g

we define an integer go as the product of all pz where p\ g and either

x<7T+z or for p = 2 and 4| r + 1, 2r~'r+1| r + 1. Then g0 is the smallest

integer of the equivalence class containing g. Let f=l+r+ • • •

+rA_1. Let ß be an integer such that ß = px~T~z (mod px) if p\g and

x=7r+z for jt> =¿2 or for p = 2 with 4|j— 1. For 21g and 4|r + l let

/3=1 (mod 2X). Otherwise let ß = 0 (mod px). Then from Lemma 3,

for />|g, x2i7r+z, where p9é2 or £ = 2 and 4|r —1, we have ¿»^¡Ißf.

For 2\g and 4¡r + 1 we have 2s+*-l\\ßC where 25[|r+l. Note that for

p = 2 and 4| r + 1 we have z = 1 or 0 and 5^x — w.

Let a be an integer such that a(ßC/k) = — 1 (mod />*) whenever

íir-*||/3f' and a = 0 (mod p") otherwise. [The first case also includes the

case where p = 2, 2= 1, 4| r + 1, and 5=x— ir.] It could be easily shown

that aaßb is of order hgB. Hence G is isomorphic to a group Go whose

defining relations are given by those of G with go exchanged for g and

ko —n I go exchanged for k.

Assume G~H and 4| r+1 with 4| n and 2| h. Consider the 2-Sylow
subgroups G(2) and H(2) of G and H respectively. Then G(2)9¿H(2).

From Lemma 7 the defining relations of G(2) and H(2) can be taken

as those of G and ü where n, h, g, and g' are changed to 21, 2T, 2Z, and

22' respectively. From Lemma 6 the highest power of 2 dividing r + 1

is the same as that dividing a+l except possibly when r+1

so-+l+2I-1 = 0 (mod 2X). Assume r + l=<r + l+2I-1 = 0 (mod 2X).

If z = z', then Lemma 8 implies that ire2. If 1 =zr¿z' = Q and 7r = l,

then G(2)z^H(2) since G(2) is the quaternion group. If 0=Z9£z' = 1

and x = 1, then z' = 1 may be changed to z' = 0 (see proof of Lemma 8)

and hence G(2)^H(2). Hence we have tt =:2 in case r+1 =<r+1+21"1

= 0 (mod 2X), and therefore 2X~T+1 divides both r+1 and o"+l.

The above discussion shows that the equivalence relation on the

divisors of n will be the same if a is exchanged for r provided that

GzfeH. Hence go and k0, as defined above, may be exchanged for g'

and k' in the defining relation of H. This implies that we only need

to prove the theorem for the case where g'=g.
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5. Proof of the necessity. In the next two sections assume the

notations of §2 and let g = g'. For convenience we let m = hg= Yip"

where ir = y—z.

Let p be a prime dividing v. Then using the Sylow theorem and

Lemma 7, the defining relations of any ¿>-Sylow subgroup, G(p), of G

is given by

A** = B'" = 1,       A»x~° = B*v~\       BA = ArB.

Here r is of order p"» in M(px). Similarly the £-Sylow subgroup, H(p)

= { C, D}, of 77, is given by exchanging C for A, D for B, and a for r.

Let r¡p be defined for the prime p as done in §4. The isomorphism of

H(p) and G(J>), by Lemma 8, gives us a = rsp (mod t)v) where (Sj,, £)

= 1. Using Lemma 5 we have a = r\ (mod ??') where i\' is the product

of all r¡p, p\v and s is an integer. Note that -q' =r¡ for all cases except

when 4| r + 1 and 2"_1| i„, in which case 7/' =r¡/2.

Assume the isomorphism, \y: 77—>G, is given by \¡/(c)=aaba and

t^(ti) =aíí»r. Then from ^(dc) =y¡/(Cd) we have

(i) 0((t - 1) s 0    (mod h)

art = a(l + fß + . . . + rfîc*-i>) + 5(rífcr _ !)

+ 0A(<r - 1)/Ä    (mod w).

(a) r3=l (modp). Let p\p, then p\a~í and from (i), £"||8. Assume

r"f^l (mod px), then since rh = l (mod i»*), from Lemma 1, pl[rß — l.

Choose an integer/ such that p\f and qTq\f, qVq\f, q^P- Then rsß=\

(mod qXq) for every g| n. Using this and Lemma 3, (ii) and (iii), it can

be shown that (a"bß)f= 1, a contradiction. Hence rß=l (mod p.) and

f„|/3.
(b) (a, p.) = 1 and <r s= rr (mod /x). Let p \ p and assu me p \ a. Choose

/such that n\f, n/p |/ and m \fß. As above we have (a"bß)f — 1, a contra-

diction. Hence (a, p) = 1. The second result follows sincep\ßk(a — 1)/A.

And since we have an isomorphism 4''- G—>i7, we also have ({", t„) = 1.

(c) (a, i„ fp) = 1. We have

a = (aabßy(aWy = aW«4*'

where/3e+f/=0 (mod A), t'ssl (mod A), and

Í = a(l + r* +-h rß(°-») + jr*(l + rf + • • • + r"^»).

If p| £„ and ^| i„, then ¿>|/3 and />| k. From the above ¿>|/, and hence

from Lemma 3, p divides the last sum in the expression for i. Since

i= 1 (mod k), it follows that p\a or (a, t„ f„) = 1.

(d) 6\ßk((x-i)/h.   Clearly  k\ßk(<r-l)/h = n'.   To  prove   (6*,  n)
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divide »' we only need to show that ßk/h is an even integer when

t„ tm and g are all even. Now ßk/h is an integer since (a"bß)k = (abb{)h

= afk where (f, g) = 1 and

/ = o(l + r» +-h i*»-")/* + ßk/h.

Assume tv, /„, and g are all even. Then 2\a, 2\ß, 4|rß —1, and from

Lemma 3, the coefficient of a is odd. Hence ßk/h is even since/ is odd.

To show that ([9i, m]/m, n) \ n', we only need to consider primes p

dividing v. Considering the highest power of p dividing ([di, m]/m, n),

the result can be proved easily. Note that for p = 2, the cases 4| r — 1

and 4|r+l should be taken separately.

Now we complete the proof of the necessity. First note that if

2y~1\ t„ then 2X\ 6 and, from congruence (ii), a = r' (mod 2X), and hence

a = r" (mod v). This implies cr = r* (mod X). For p\v, replacing pw for

» in congruence (ii) and using the above we have

art = ao- -f fpv+vr-u'    (m0(j pw)

where p"'\\t\. [Note that the cases p = 2, 4|r-l and p = 2, 4|r+l

should be taken separately. ] Replacing <r by r* in this congruence, it

follows that (t\, <„)| s—f. Since 6=\p, using (b) above and Lemma 5

we have {c}i= {r}«. It is already shown above that |(r},= {r}„

which proves the necessity.

6. Proof of the sufficiency. The conditions of the theorem mean

that there exist integers e and / such that a=r° (mod n) and o- = rf

(mod 0) where (e, tv) = (/, te) = 1. If 77 =p/2 then either <r = rä (mod 2X)

or r+l=o- + l+2:r~1 = 0 (mod 2X). For the defining relations of H we

assume {c} P\ {d} is of order g instead of merely c* = dh.

We find integers a, ß, and f such that the map \//: H^>G, given by

if/(c) =a"bß and ip(d) =b{, is an isomorphism. We fix e and/ above and

define an integer 6'.

For p\v let p*'||re — rf. Let p"\\0', p\ n, where s is given as follows:

Forp9¿2 or p = 2 and <x = re (mod 2X), let s=x if p\r — 1, i; = 0, z = 0,

s'^ï, or s'^x+p— w, otherwise let s = s'. For £ = 2 and r + 1

= <t+1+2*-1=0 (mod 2X), let s=x-l. Define X'=0'/ju, then <r

= re (mod X')- Applying Lemmas 3 and 5 it could be shown that there

exists/' such that ff=f (mod 6').

Now we set the congruences (a), (b), and (c), that define integers f,

ß, and a respectively.

(a) t—f (mod te>) and fsl (mod e') where e' is the product of

distinct primes p with p\m and p\k>.
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(b) j8 = 0 (mod p") if s =x, 0 = £«-«*+»+« (mod p") ii s<x and either

p^2 or p = 2 and 4|r-l, and ß = 2-x+*+1 (mod 2») if 4|r+l.

(c) asl (mod px) if s=x. If 5<x, then

a[r* - (1 + r»+ • • • + r^'-1')] s j9*(o- - 1)/A    (mod/»1).

Now consider the prime p\v and assume x<s. For p odd, from

Lemma 1, £I-U[|r — 1, and from the definition of 6 we have s^w

2:x + (x— u-\-v) — y or pv\y. For p = 2, two cases occur and again 2c|y.

Again, using the definition of 6, s^w^x—z, and hence h\ß(<r — l).

Now for 5<x, p?¿2, we have ps\\ßk((j-l)/h. Also rß= 1 (mod ps+l),

for otherwise s = x. Hence the coefficient of a in the second congruence

of (c) is r^ — r" (mod p"+1). From the definition of f, ¡p*||ff — r". For

£ = 2, two cases occur and 2s[|rf — re. Hence a exists.

From the above definitions we have ¥(aabß) = (aabß)"b{. Again using

prime divisors p of v as above, we have h\yk. Using Lemma 3, it fol-

lows that (a"bß)k is a power of ak, say a,k. Here/ is given as in (d) of

§5. Note that (a, n) = l. If p\g then p\ r — 1. From Lemma 3 and the

definition of ß the prime p does not divide the first expression in the

formula of/. If p = 2, 2 \ g, then from the definition of ß we have 21 ßk/h

in all cases and hence 2\f. For p9i2, s=x, we have p\ßk/h and p\f.

Now let p9i2 and s<x and assume p\f. Then the expression above

gives a= —ßk/h-\-fp for some integer/'. Putting this in the second

congruence of (c) we have, since r"=l (mod p'+1),

-ßk(rt - a)/h = ßkia - 1)/Ä    (mod p°+1)

or ps+l divides — ßk(rf — I)¡h. But ¿>I_u||rr — 1 and s^x — u, and hence

p | ßk/h. This implies that p\f, a contradiction. Therefore (/, g) = 1 and

(aabß)h is of order g and hence 77 and G are isomorphic. This proves

the sufficiency and completes the proof of the theorem.
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