
ON THE DUAL OF HORNICH'S SPACE

JOSEPH A. CIMA

Let D be unit disk and 3C the set of analytic functions/ in D with

/(0)=0,/'(z)5¿0and |arg/'(z)| ÚK = K,, /'(O) = 1. Hornich has de-

fined operations on 3C so that it is a real Banach space [2]. That is if

/, g are in 3C and a is real

\f,g](*)= (Zf'(t)g'(t)dt,
J 0

[«X/](*)=  f*\f'(t)Tdt,

and ll/ll =supZ',2"6j5 |arg/'(z')—arg/'(z")|. Let v be a real valued,

bounded, finitely additive set function on the Lebesgue measurable

subsets of |z| =1 with v(E) =0 if E is a Lebsegue null set. We will

call v a charge.

Theorem. The dual of the Hornich space on D can be identified

isomorphically with equivalence classes of charges on the unit circle.

Proof. Let 'Uo be the linear space of bounded harmonic functions

on D vanishing at the origin. We define a map T from 3C to llo by

T(i) =arg/'. The normalization of functions in 3C and the Cauchy-

Riemann equations guarantee that T is one to one and onto 'llo-

Moreover, if ||w||«, is the sup norm for a function uE^o we see that

NU ^ ||/||3C Ú 2\\Uf\\„

where u¡ is the image of/ under T. Thus T is a bicontinuous map of

3C onto cUo- The Fatou theorem implies that limr_i u(reie) =m(0) exists

a.e. Also it can be shown that the essential sup norm of u(d) coincides

with the sup norm of u in the disk. Further, if ü is the equivalence

class of u(d) in LK then it is uniquely determined by u. The dual of

Lm is given by the charges v on |a| =1, see N. Dunford and J.

Schwartz [l, pp. 296-297]. Since llo (regarded as a subspace of 7,°°)

has codimension one we have the result. That is a functional on 3C

is given by an equivalence class [v] of charges, where vi~v2 if and

only if vi =v2+kdd, k a constant.

We observe that the obvious linear functionals
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r.,(/) = arg/'(*o), \zo\   <1

are given by integrating the boundary values of arg /' against the

Poisson kernel at Zo. Also one can show by examples that the evalua-

tion maps /—*/(zo) are not continuous in the Hornich topology.
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