ON THE DUAL OF HORNICH'S SPACE

JOSEPH A. CIMA

Let D be unit disk and $\mathcal K$ the set of analytic functions f in D with f(0) = 0, $f'(z) \neq 0$ and $\left|\arg f'(z)\right| \leq K = K_f$, f'(0) = 1. Hornich has defined operations on $\mathcal K$ so that it is a real Banach space [2]. That is if f, g are in $\mathcal K$ and α is real

$$[f, g](z) = \int_0^z f'(t)g'(t)dt,$$
$$[\alpha \times f](z) = \int_0^z [f'(t)]^\alpha dt,$$

and $||f|| = \sup_{z',z'' \in D} |\arg f'(z') - \arg f'(z'')|$. Let ν be a real valued, bounded, finitely additive set function on the Lebesgue measurable subsets of |z| = 1 with $\nu(E) = 0$ if E is a Lebsegue null set. We will call ν a charge.

THEOREM. The dual of the Hornich space on D can be identified isomorphically with equivalence classes of charges on the unit circle.

PROOF. Let \mathfrak{U}_0 be the linear space of bounded harmonic functions on D vanishing at the origin. We define a map T from \mathfrak{K} to \mathfrak{U}_0 by $T(f) = \arg f'$. The normalization of functions in \mathfrak{K} and the Cauchy-Riemann equations guarantee that T is one to one and onto \mathfrak{U}_0 . Moreover, if $\|u\|_{\infty}$ is the sup norm for a function $u \in \mathfrak{U}_0$ we see that

$$||u_f||_{\infty} \le ||f||_{\mathfrak{M}} \le 2||u_f||_{\infty}$$

where u_f is the image of f under T. Thus T is a bicontinuous map of \mathfrak{R} onto \mathfrak{A}_0 . The Fatou theorem implies that $\lim_{r\to 1} u(re^{i\theta}) = u(\theta)$ exists a.e. Also it can be shown that the essential sup norm of $u(\theta)$ coincides with the sup norm of u in the disk. Further, if \bar{u} is the equivalence class of $u(\theta)$ in L^{∞} then it is uniquely determined by u. The dual of L^{∞} is given by the charges ν on |z|=1, see N. Dunford and J. Schwartz [1, pp. 296–297]. Since \mathfrak{A}_0 (regarded as a subspace of L^{∞}) has codimension one we have the result. That is a functional on \mathfrak{R} is given by an equivalence class $[\nu]$ of charges, where $\nu_1 \sim \nu_2$ if and only if $\nu_1 = \nu_2 + kd\theta$, k a constant.

We observe that the obvious linear functionals

Received by the editors September 11, 1968 and, in revised form, October 28, 1968.

$$T_{z_0}(f) = \arg f'(z_0), \quad |z_0| < 1$$

are given by integrating the boundary values of arg f' against the Poisson kernel at z_0 . Also one can show by examples that the evaluation maps $f \rightarrow f(z_0)$ are not continuous in the Hornich topology.

REFERENCES

- 1. N. Dunford and J. Schwartz, *Linear operators*. Part I, Interscience, New York, 1958.
- 2. H. Hornich, Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, Monatsh. Math. 73 (1969), 36-45.

University of North Carolina