ON A THEOREM OF POKORNYI

W. J. KIM

Let $p_{0}, p_{1}, \cdots, p_{n-1}$ be analytic functions defined in a region R. The differential equation

$$
\begin{equation*}
y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{0} y=0 \tag{1}
\end{equation*}
$$

is said to be disconjugate in R if no nontrivial solution of (1) has more than $n-1$ zeros (where the zeros are counted with their multiplicities) in R. For the even-order equation ($n=2 m$), we may consider a weaker notion of disconjugacy: Equation (1) is said to be disconjugate in the sense of Reid [9] in R if no nontrivial solution of (1) has two zeros of order m in R.
Disconjugacy of the second-order equation

$$
\begin{equation*}
y^{\prime \prime}+p y=0 \tag{2}
\end{equation*}
$$

has been studied by Nehari [5], [7], Pokornyi [8], and London [4]; the results are usually formulated as univalence criteria for an analytic function. In [8], Pokornyi announced the following theorem: Let p be analytic in $D=\{z:|z|<1\}$. If

$$
|p(z)| \leqq 2 /\left(1-|z|^{2}\right), \quad z \in D,
$$

then Equation (2) is disconjugate in D.
The principal aim of this note is to establish an analogous result for the equation

$$
\begin{equation*}
y^{(2 m)}+p y=0 . \tag{3}
\end{equation*}
$$

Theorem I. Let p be analytic in $D=\{z:|z|<1\}$. If

$$
|p(z)| \leqq(2 m)!/\left(1-|z|^{2}\right)^{m}, \quad z \in D,
$$

then Equation (3) is disconjugate in the sense of Reid in D.
For the proof of the above theorem, we require the following lemma.

Lemma I. Let y be analytic in a region R. If $y\left(a_{i}\right)=0, a_{i} \in R$, $i=1,2, \cdots, n$, then

Received by the editors April 11, 1969.

$$
\begin{aligned}
y\left(z_{0}\right)= & \left(a_{n}-z_{0}\right) \cdots\left(a_{2}-z_{0}\right) \int_{a_{1}}^{z_{0}} \frac{1}{\left(a_{2}-z_{1}\right)^{2}} \int_{a_{2}}^{z_{1}} \frac{a_{2}-z_{2}}{\left(a_{3}-z_{2}\right)^{3}} \cdots \\
& \cdot \int_{a_{n-1}}^{z_{n-2}} \frac{\left(a_{n-1}-z_{n-1}\right)^{n-2}}{\left(a_{n}-z_{n-1}\right)^{n}} \int_{a_{n}}^{z_{n-1}}\left(a_{n}-z_{n}\right)^{n-1} y^{(n)}\left(z_{n}\right) d z_{n} \cdots d z_{1}
\end{aligned}
$$

where the integrations are performed along any curve in R connecting the two points a_{k} and $z_{k-1}, \mathrm{k}=1,2, \cdots, n$ (cf. [1]).

Proof. If f is analytic in R and $f(a)=0, a \in R$, then it is easily confirmed that

$$
\begin{equation*}
\left(\frac{f}{a-z}\right)^{(k)}=\frac{1}{(a-z)^{k+1}} \int_{a}^{z}(a-w)^{k} f^{(k+1)}(w) d w \tag{4}
\end{equation*}
$$

$\mathrm{k}=0,1,2, \cdots$ The lemma now follows from (4) and induction.
Proof of Theorem I. Suppose that Equation (3) has a nontrivial solution y with two zeros $z=a_{1}$ and $z=a_{2}$ of order m in D. Choose constants K and $\alpha,|K|=1,|\alpha|<1$, such that the transformation $z=K(w-\alpha) /(1-\bar{\alpha} w)$ carries $z=a_{1}$ and $z=a_{2}$ onto $w=0$ and w $=-\rho, 0<\rho<1$, respectively. Then the function Y defined by

$$
Y(w)=y\left(\frac{K(w-\alpha)}{1-\bar{\alpha} w}\right) \cdot \exp \left[-(2 m-1) \int \frac{\bar{\alpha}}{1-\bar{\alpha} w} d w\right]
$$

has two zeros $w=0$ and $w=-\rho$ of order m and satisfies the differential equation

$$
\begin{equation*}
Y^{(2 m)}+\left[\frac{K\left(1-|\alpha|^{2}\right)}{(1-\bar{\alpha} w)^{2}}\right]^{2 m} q Y=0 \tag{5}
\end{equation*}
$$

where $q(w)=p(K(w-\alpha) /(1-\bar{\alpha} w)$) (see, e.g., [3]). Furthermore, we have

$$
\begin{equation*}
\left|\frac{K\left(1-|\alpha|^{2}\right)}{(1-\bar{\alpha} w)^{2}}\right|^{2 m}|q(w)| \leqq \frac{(2 m)!}{\left(1-|w|^{2}\right)^{m}} \tag{6}
\end{equation*}
$$

for $-1<w \leqq 0$. Since the transformation $z=K(w-\alpha) /(1-\bar{\alpha} w)$ can be built up from two rotations and a transformation of the type $z=(w-\beta) /(1-\beta w), 0<\beta<1$, it suffices to establish (6) for these two types of transformations. That (6) holds for $z=K w,|K|=1$, is readily seen. For $z=(w-\beta) /(1-\beta w), 0<\beta<1$, we have

$$
\begin{aligned}
&\left|\frac{1-\beta^{2}}{(1-\beta w)^{2}}\right|^{2 m}\left|p\left(\frac{w-\beta}{1-\beta w}\right)\right| \\
& \leqq\left|\frac{1-\beta^{2}}{(1-\beta w)^{2}}\right|^{2 m} \frac{(2 m)!}{\left(1-|(w-\beta) /(1-\beta w)|^{2}\right)^{m}} \\
&=\frac{(2 m)!}{\left(1-|w|^{2}\right)^{m}}\left|\frac{1-\beta^{2}}{(1-\beta w)^{2}}\right|^{m} \\
& \leqq \frac{(2 m)!}{\left(1-|w|^{2}\right)^{m}}, \quad-1<w \leqq 0 .
\end{aligned}
$$

We now use Lemma I to express the function Y in the interval $[-\rho, 0]$:

$$
\begin{align*}
Y(w)= & -(\rho+w)^{m-1} w^{m} \int_{-\rho}^{w} \frac{1}{\left(\rho+w_{1}\right)^{2}} \int_{-\rho}^{w_{1}} \frac{1}{\left(\rho+w_{2}\right)^{2}} \cdots \\
& \cdot \int_{-\rho}^{w_{m-2}} \frac{1}{\left(\rho+w_{m-1}\right)^{2}} \int_{-\rho}^{w_{m-1}} \frac{\left(\rho+w_{m}\right)^{m-1}}{w_{m}^{m+1}} \int_{0}^{w_{m}} \frac{1}{w_{m+1}^{2}} \cdots \tag{7}
\end{align*}
$$

$$
\int_{0}^{w_{2 m-1}} \frac{1}{w_{2 m-1}^{2}} \int_{0}^{w_{2 m-1}} w_{2 m}^{2 m-1} Y^{(2 m)}\left(w_{2 m}\right) d w_{2 m} \cdots d w_{1}
$$

where the integrations are performed along the negative real axis. Since $\left|Y^{(2 m)}(w)\right|$ is a continuous function defined on the compact interval $[-\rho, 0]$, it attains its maximum at some point $w=w_{0},-\rho$ $\leqq w_{0} \leqq 0$. Taking the absolute values and integrating (7), we arrive at

$$
\begin{equation*}
|Y(w)| \leqq\left|Y^{(2 m)}\left(w_{0}\right)\right||w|^{m}|\rho+w|^{m /(2 m)}!, \quad-\rho \leqq w \leqq 0 . \tag{8}
\end{equation*}
$$

Finally, from (5) and (8), we deduce

$$
\left|Y^{(2 m)}(w)\right| \leqq \frac{1}{(2 m)!}\left|Y^{(2 m)}\left(w_{0}\right)\right|\left|\frac{K\left(1-|\alpha|^{2}\right)}{(1-\bar{\alpha} w)^{2}}\right|^{2 m}|q(w)||w|^{m}|\rho+w|^{m}
$$

for $-\rho \leqq w \leqq 0$; in particular, for $w=w_{0}$,

$$
\begin{aligned}
1 & \leqq \frac{1}{(2 m)!}\left|\frac{K\left(1-|\alpha|^{2}\right)}{\left(1-\bar{\alpha} w_{0}\right)^{2}}\right|^{2 m}\left|q\left(w_{0}\right)\right|\left|w_{0}\right|^{m}\left|\rho+w_{0}\right|^{m} \\
& <\frac{1}{(2 m)!}\left|\frac{K\left(1-|\alpha|^{2}\right)}{\left(1-\bar{\alpha} w_{0}\right)^{2}}\right|^{2 m}\left|q\left(w_{0}\right)\right|\left(1-\left|w_{0}\right|^{2}\right)^{m},
\end{aligned}
$$

contrary to (6). This contradiction proves the theorem.
This theorem for the case $m=2$ was previously obtained by Hadass [2].

Disconjugacy criteria of a somewhat different nature may be obtained with the help of the following inequalities [4], [6]: If p is analytic in $D=\{z:|z|<1\}, z=x+i y$, then

$$
|p(w)| \leqq \frac{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right| d \theta}{2 \pi\left(1-|w|^{2}\right)}, \quad w \in D
$$

and

$$
|p(w)| \leqq \frac{\iint_{|z|<1}|p(z)| d x d y}{\pi\left(1-|w|^{2}\right)^{2}}, \quad w \in D
$$

From these inequalities and Theorem I results the following theorem.
Theorem II. Let p be analytic in $D=\{z:|z|<1\}$. If

$$
\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right| d \theta \leqq 2 \pi(2 m)!
$$

or if $m \geqq 2$ and if

$$
\iint_{|z|<1}|p(z)| d x d y \leqq \pi(2 m)!
$$

then Equation (3) is disconjugate in the sense of Reid in D.

References

1. G. A. Bessmertnyh and A. Yu. Levin, Some inequalities satisfied by differentiable functions of one variable, Dokl. Akad. Nauk SSSR 144 (1962), 471-474 = Soviet Math. Dokl. 3 (1962), 737-740.
2. R. Hadass, On the zeros of the solutions of the differential equation $y^{(n)}(z)+p(z) y(z)$ $=0$, Pacific J. Math. (to appear).
3. W. J. Kim, On the zeros of solutions of $y^{(n)}+p y=0$, J. Math. Anal. Appl. 25 (1969), 189-208.
4. D. London, On the zeros of the solutions of $w^{\prime \prime}(z)+p(z) w(z)=0$, Pacific J. Math. 12 (1962), 979-991.
5. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
6. ——Conformal mapping, 1st ed., McGraw-Hill, New York, 1952, p. 127.
7. -_, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700-704.
8. V. V. Pokornyi, On some sufficient conditions for uniralence, Dokl. Akad. Nauk SSSR 79 (1951), 743-746.
9. W. T. Reid, Oscillation criteria for self-adjoint differential systems, Trans. Amer. Math. Soc. 101 (1961), 91-106.

State University of New York, Stony Brook

