BOUNDED SOLUTIONS OF SOME ABSTRACT DIFFERENTIAL EQUATIONS

S. ZAIDMAN¹

Introduction. We give here two theorems abstract versions and generalization of some results in our previous papers [2], [3].² For semigroup theory applied here look at [1].

THEOREM 1. Let T(t) be a strongly continuous semigroup in the Banach space X such that T(o) = I and $\lim_{t\to\infty} T(t)x = 0 \ \forall x \in X$.

Let A be its infinitesimal generator and suppose $\exists \lambda_0 \in \mathbb{C}$ such that $(\lambda_0 - A)^{-1}$ is a compact operator in X.

Let $u(t) \in C^1(-\infty, \infty; X)$, $u(t) \in D(A) \ \forall t \in (-\infty, \infty)$, be a solution of the abstract differential equation

$$u'(t) = Au(t)$$

which is defined for all $t \in (-\infty, \infty)$.

Suppose $\exists c > 0$ such that $\int_t^{t+1} ||u(t)||_X^2 dt \leq c$, $\forall t \in (-\infty, \infty)$. Then $u(t) \equiv \theta$, $\forall t \in (-\infty, \infty)$.

PROOF OF THE THEOREM. We remark first that from our hypothesis

$$\sup_{-\infty \le t \le \infty} \int_{t}^{t+1} ||u(t)||_{X}^{2} dt < \infty$$

there follows the existence of a sequence $(t_n)_1^{\infty} \downarrow -\infty$, such that $\sup_{n\in\mathbb{N}} ||u(t_n)||_X < \infty$. We remark also that, for each $t \geq t_0$, the function u(t) admits the representation $u(t) = T(t-t_0)u(t_0)$.

Also, a well-known fact is that $(\lambda_0 - A)^{-1}T(t) = T(t)(\lambda_0 - A)^{-1}$. Let us put now: $\omega(t) = (\lambda_0 - A)^{-1}u(t)$; obviously sequence $\{\omega(t_n)\}_1^{\infty}$ contains a convergent subsequence $\omega(t_{n_k}) \to \omega_{\infty} \in X$, and $\omega(t) = T(t - t_0)\omega(t_0)$, $\forall t \geq t_0$. Let $t \in (-\infty, \infty)$ be fixed and k_0 big enough to get $t_{n_k} < t$ for $k \geq k_0$. Then we obtain, as $t > t_{n_k}$,

$$\omega(t) = T(t - t_{n_k})\omega(t_{n_k}) = T(t - t_{n_k})[\omega(t_{n_k}) - \omega_{\infty}] + T(t - t_{n_k})\omega_{\infty}$$

and, consequently,

Received by the editors February 17, 1969.

¹ Supported by the N.R.C. of Canada.

² We thank the referee whose report helped us to improve the presentation of Theorem 1 and the original Theorem 2.

$$\begin{aligned} \|\omega(t)\| &\leq \|T(t-t_{n_k})\|\varepsilon_{(X,X)}\|\omega(t_{n_k}) - \omega_{\infty}\|_X + \|T(t-t_{n_k})\omega_{\infty}\|_X \\ &\leq L\|\omega(t_{n_k}) - \omega_{\infty}\|_X + \|T(t-t_{n_k})\omega_{\infty}\|_X, \quad \forall k \geq k_0. \end{aligned}$$

(Because of the strong continuity of T(t) and asymptotic decay to 0, it follows that $||T(t)||_{\mathfrak{L}} \leq L$.) This obviously implies $\omega(t) = \theta$, hence $u(t) = \theta$.

In the second result, conditions on the compactness of $(\lambda_0 - A)^{-1}$ and on strong asymptotic decay of T(t) are replaced by the condition of strong asymptotic decay of the adjoint semigroup $T^*(t)$. Precisely, we have

THEOREM 2. Let T(t) be a strongly continuous semigroup in the Banach space X, and let us suppose that

$$\lim_{t\to\infty} T^*(t)x^* = 0, \qquad \forall x^* \in X^*$$

 $T^*(t)$ being, $\forall t \in (0, \infty)$, the adjoint operator of T(t) acting in the dual space X^* . Let A be the infinitesimal generator of T(t) and u(t); $-\infty < t < \infty \Rightarrow D(A)$ be a strong solution of the differential equation u'(t) = Au(t). Suppose $\exists c > 0$ such that

$$\int_{t}^{t+1} ||u(t)||_{X}^{2} dt \leq c, \quad -\infty < t < \infty.$$

Then $u(t) \equiv \theta, -\infty < t < \infty$.

PROOF OF THEOREM 2. As in Theorem 1 we find a sequence $(t_n)_1^\infty$ of real numbers, such that $\lim_{n\to\infty} t_n = -\infty$ and $\|u(t_n)\|_X \le M$, $n=1, 2, \cdots$. For arbitrary real t_0 , we will have $t_n < t_0$ if $n \ge n_0$. Then we may represent $u(t_0)$ as: $u(t_0) = T(t_0 - t_n)u(t_n)$. Take now an arbitrary $x^* \in X^*$; then, if \langle , \rangle means duality between X and X^* we will have $\langle x^*, u(t_0) \rangle = \langle x^*, T(t_0 - t_n)u(t_n) \rangle = \langle T^*(t_0 - t_n)x^*, u(t_n) \rangle$ and

$$|\langle x^*, u(t_0) \rangle| \le ||T^*(t_0 - t_n)x^*|| ||u(t_n)|| \le M||T^*(t_0 - t_n)x^*||.$$

As $n \to \infty$, $T^*(t_0 - t_n)x^* \to \theta$; hence $\langle x^*, u(t_0) \rangle = \theta \forall x^* \in X^*$ and consequently $u(t_0) = \theta$.

REMARK. An example of the situation arising in Theorem 2 is the following: (see our paper [3]).

Take $X = L^2(\mathbb{R}^n)$; $T(t)f = e^{-(s_1^2 + \cdots + s_n^2)t}f(s)_{t \ge 0}$, $s = (s_1 \cdot \cdots \cdot s_n)$, $f(s) \in L^2(\mathbb{R}^n)$. It is immediate that $T^*(t) = T(t)$, $\forall t \ge 0$, and that

$$\lim_{t\to\infty}\left(\int_{\mathbb{R}^n}e^{-2(s_1^2+\cdots+s_n^2)t}f^2(s)ds\right)^{1/2}=0,\qquad\forall f(s)\in L^2.$$

342 S. ZAIDMAN

Also, $Af = -(s_1^2 + \cdots + s_n^2)f(s)$ with $D(A) = \{f \in L^2, -|s|^2 f \in L^2\}$. Hence our Theorem 2 applies in this case.

REFERENCES

- 1. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., Providence, R. I., 1957.
- 2. C. Foiaș and S. Zaidman, Almost-periodic solutions of parabolic systems, Ann. Scuola. Norm. Sup. Pisa, 1962.
- 3. S. Zaidman, Soluzioni limitate e quasi-periodiche dell'equazione del calore non-omogenea. I, Rend. Accad. Naz. Lincei, 1961.

Université de Montréal