
BOUNDED SOLUTIONS OF SOME ABSTRACT
DIFFERENTIAL EQUATIONS

S. ZAIDMAN1

Introduction. We give here two theorems abstract versions and

generalization of some results in our previous papers [2], [3].2 For

semigroup theory applied here look at [l].

Theorem 1. Let T(t) be a strongly continuous semigroup in the

Banach space X such that T(o) = I and lim*-,,, T(t)x — 0 VxGA.

Let A be its infinitesimal generator and suppose 3X0GC such that

(Ko — A)"1 is a compact operator in X.

Let u(t)ECl(-oo, 00 ; A), u(t)ED(A) V/G(- °°, ^), be a solu-

tion of the abstract differential equation

u'(t) = Au(t)

which is defined for all tE(— °°, °° )•
Suppose 3c>0 such that /!+1||m(0||!^^c, V7G(-°°, <*>)■ Then

u(t)=6, WG(-°°, °°).

Proof OF the theorem. We remark first that from our hypothesis

/, (+1

||«(/)IM* < «>

there follows the existence of a sequence (tn)x I — °°, such that

sup„eAf ||it(/»)||A-< co . We remark also that, for each t^to, the function

u(t) admits the representation u(t) = T(t — t0)u(t0).

Also, a well-known fact is that (\0-A)-iT(t) = T(t)(\o-A)-\ Let

us put now: u(t) = (X0 — A)_1u(t); obviously sequence {co(/„)|" con-

tains a convergent subsequenceo:(tnk) —Xi)xEX, and co(t) = T(t — to)u>(to),

V7 2:/o- Let tE(— °°, °°) be fixed and ko big enough to get tnt<t for

k^ko- Then we obtain, as t>tnk,

«(0   =   T(l - tnMt»k)  =   T(t - tnk)[<*(tnk)  - ».] +  T(t - ftja.

and, consequently,
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||«(0|| ̂  \\T(t - Oll*cr^)||«(/J - «.||z + \\T(t - tJaJi\x

= L||w(/Bt) — w«,||x + || T(t — /nt)w„||x,        V£ =: k0.

(Because of the strong continuity of T(t) and asymptotic decay to

0, it follows that ||P(0|U=-£") This obviously implies u(t)=d,

hence u(t) =$.

In the second result, conditions on the compactness of (X0 — A)~l

and on strong asymptotic decay of T(t) are replaced by the condition

of strong asymptotic decay of the adjoint semigroup T*(t). Precisely,

Ave have

Theorem 2. Let T(t) be a strongly continuous semigroup in the

Banach space X, and let us suppose that

lim T*(t)x* = 0,        Vx* E X*

T*(t) being, V/G(0, oo), the adjoint operator of T(f) acting in the dual

space X*. Let A be the infinitesimal generator of T(t) and u(t); — oo </

< <x>=>D(A) be a strong solution of the differential equation u'(t) =Au(t).

Suppose 3c >0 such that

||«W|U^ = C, -oo   < / <  oo.

Then u(t)=B, — <n<t<<x>.

Proof of theorem 2. As in Theorem 1 we find a sequence (tn)x

of real numbers, such that lim™-., tn= — oo and ||w(f„)||x=i.M',

re = 1,2, • • •. For arbitrary real to, we will have tn<t0 if re3?re0. Then

we may represent u(t0) as: u(t0) = T(t0 — tn)u(tn). Take now- an arbi-

trary x*EX*; then, if ( , ) means duality between X and X* we will

have (x*, zt(/0)) = (x*, T(t0 — tn)u(tn)) = (T*(to — tn)x*, u(t„)) and

\(x*, u(t0))\   S \\T*(to - tn)x*\\ \\u(tn)\\ S M\\T*(t0 - tn)x*\\.

As »-*«>, T*(to-tn)x*^>6; hence (x*, u(t0))=6Vx*EX* and conse-

quently u(t0) =0.

Remark. An example of the situation arising in Theorem 2 is the

following: (see our paper [3]).

Take X = P2(P»); T(ftf-g-<ft~ • "*$'f(s)w, s = (st ■ ■ ■ s„), f(s)
EL2(Rn). It is immediate that T*(t) = T(t), V/^0, and that

lim (  j    e-2<-*+---+&tP(s)ds)     =0,        Vf(s) E L2.
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Also, Af=-(s\+ ■ ■ ■ +sn)f(s) with D(A) = {fEL\  -|s|2/GL2}.
Hence our Theorem 2 applies in this case.
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