A NOTE ON Z-MAPPINGS AND WZ-MAPPINGS

PHILLIP ZENOR1

1. Introduction. In [2] Isiwata introduced the notion of WZ-mappings which he shows to be an extension of the notion of Z-mappings introduced by Frolik [1]. The purpose of this paper is to show that every Z-mapping defined on the space X is closed if and only if X is normal. Necessary and sufficient conditions are also found so that every WZ-mapping is a Z-mapping.

Throughout this paper, topological spaces are assumed to be completely regular T_1 -spaces and mappings are continuous functions. If ϕ is a mapping taking X into Y, then Φ will denote the Stone extension of ϕ taking βX into βY .

The mapping $\phi: X \to Y$ is a WZ-mapping if $\operatorname{cl}_{\beta X} \phi^{-1}(y) = \Phi^{-1}(y)$ for each y in the image of ϕ .

The mapping $\phi: X \rightarrow Y$ is a Z-mapping if the images of zero-sets are closed.

The space X has property Z if every closed set H is completely separated from every zero-set disjoint from H.

2. **Description of a mapping.** If A is a closed subset of the space X, then let ϕ_A denote the natural function taking X onto Y = X/A. Let C denote the subcollection of R^Y to which f belongs if and only if $f \circ \phi_A$ is in C(X). Let the topology on Y be the topology induced by C, i.e., the smallest topology such that each element of C is continuous. Since X is completely regular, Y is Hausdorf; hence, it follows from [3, Theorem 3.7] that Y is completely regular. Also, by [3, Theorem 3.8], ϕ_A is continuous. The referee has pointed out that the topology on Y is the finest completely regular topology such that ϕ_A is continuous, X has property X if and only if X is a quotient map for each closed set X in X is normal if and only if X is a quotient map for each closed set X in X.

LEMMA. ϕ_A is always a WZ-mapping.

PROOF. It need only be shown that $\operatorname{cl}_{\beta X}(A) = \Phi^{-1}(\phi(A))$. Let $x \in \beta X - \operatorname{cl}_{\beta X}(A)$. Since x is not in $\operatorname{cl}_{\beta X}(A)$, there are disjoint zero-setneighborhoods H and K, such that $x \in H$ and $\operatorname{cl}_{\beta X}(A) \subset K$. By the

Presented to the Society, November 9, 1968 under the title Z-mappings and WZ-mappings; received by the editors March 29, 1968.

¹ The author wishes to acknowledge that the research for this paper was partially supported by NASA Grant NGR-44-005-037.

construction of ϕ_A , $\phi_A(H \cap X)$ and $\phi_A(K \cap X)$ are disjoint zero-sets in Y = X/A; and so, $\operatorname{cl}_{\beta Y}(\phi_A(H \cap X))$ and $\operatorname{cl}_{\beta Y}(\phi_A(K \cap X))$ are disjoint. It follows that $\phi_A(A)$ does not belong to $\operatorname{cl}_{\beta Y}(\phi_A(H \cap X))$. Since $x \in \operatorname{cl}_{\beta X}(H \cap X)$, $\Phi_A(x) \in \operatorname{cl}_{\beta Y}(\phi_A(H \cap X))$; therefore, $\Phi_A(x) \neq \phi_A(A)$.

3. Results.

THEOREM 1. X has property Z if and only if every WZ-mapping is a Z-mapping.

PROOF. First, suppose that X has property Z and that ϕ is a WZ-mapping from X to Y. Let Z be a zero-set in X and y a point of $\phi(X) - \phi(Z)$. Then $\phi^{-1}(y)$ is a closed subset of X. Since X has property Z, there is a zero-set A containing $\phi^{-1}(y)$ that is disjoint from Z. By [3, Theorem 6.5], $\operatorname{cl}_{\beta X}(A)$ is disjoint from $\operatorname{cl}_{\beta X}(Z)$. Since $\Phi^{-1}(y) = \operatorname{cl}_{\beta X}(\phi^{-1}(y))$, $\Phi^{-1}(y)$ is a subset of $\operatorname{cl}_{\beta X}A$; and so, y is not in $\Phi(\operatorname{cl}_{\beta X}Z)$ which is a closed set in βY . It follows that $\phi(Z)$ is closed in $\phi(X)$.

Now, suppose that X does not have property Z; that is, suppose that H is a closed subset of X and K is a zero-set disjoint from H such that H and K are not completely separated. By the lemma, ϕ_H is a WZ-mapping. To see that ϕ_H is not a Z-mapping, observe that $\phi(H)$ is a limit point of $\phi(K)$.

Theorem 2. The space X is normal if and only if every Z-mapping is closed.

PROOF. Suppose that X is not normal.

Case I. X has property Z. Let H and K denote disjoint closed sets that are not completely separated. Consider $\phi_H: X \to Y = X/H$. ϕ_H is not closed since $\phi_H(H)$ is a limit point of $\phi_H(K)$. However, by the lemma, ϕ_H is a WZ-mapping and hence a Z-mapping by Theorem 1.

Case II. If X does not have property Z, then there are a closed set H and a zero-set K disjoint from H such that H and K are not completely separated. $\phi_K \colon X \to X/K$ is not a closed mapping since $\phi_K(K)$ is a limit point of $\phi_K(H)$. However, since any two disjoint zero-sets in X are completely separated, it follows that ϕ_K is a Z-mapping.

Now, in [2] it is shown that a Z-mapping is a WZ-mapping and that if X is normal, then every WZ-mapping defined on X is closed. Thus, if X is normal then every Z-mapping defined on X is closed.

It should be noted that property Z does not imply normality since any countably compact space has property Z. In particular, if Ω denotes the space consisting of the first uncountable segment of the ordinal numbers together with its endpoint ω_1 , then $(\Omega \times \Omega) - (\omega_1, \omega_1)$ is a countably compact space that is not normal.

Recall that X is pseudocompact provided that every real-valued mapping defined on X is bounded.

THEOREM 3. The pseudocompact space X is countably compact if and only if X has property Z.

PROOF. It is obvious that if X is countably compact it has property Z. Suppose that X is pseudocompact and has property Z but X is not countably compact. Then there is a set $H = \{P_1, P_2, \cdots\}$, $P_i \neq P_j$ for $i \neq j$, such that H has no limit point. Let $\{U_1, U_2, \cdots\}$ be a collection of mutually exclusive open sets such that $P_i \in U_i$ for each i. For each i, let f_n be a mapping taking X into [0, 1] such that $f_n(P_n) = 1/n$ and $X - U_n \subset f_n^{-1}(0)$. Let $f = \sup [f_1, f_2, \cdots]$. f is continuous and $f^{-1}(0)$ does not intersect H. By hypothesis, there is a mapping $h: X \to [0, 1]$ such that $H \subset h^{-1}(0)$ and $f^{-1}(0) \subset h^{-1}(1)$. Let g = f + h. Then 1/g is a mapping that is unbounded which is a contradiction from which the theorem follows.

From Theorems 1 and 3 the following theorem is obtained.

THEOREM 4. The pseudocompact space X is countably compact if and only if every WZ-mapping defined on X is a Z-mapping.

BIBLIOGRAPHY

- 1. Z. Frolik, Applications of a complete family of continuous functions to the theory of Q-spaces, Czechoslovak Math. J. 11 (89) (1961), 115-133.
 - 2. Takesi Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), 455-480.
- 3. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960.

University of Houston and Auburn University