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1. Introduction. We are concerned with the «th (« = 3) order linear

differential equation

ln[y] = /•> + £#»(*)?« =0
i=0

where the coefficients are continuous on (— °o, co). The results in

this paper generalize the well-known result that the first conjugate

point nx(t) for h[y] =0 satisfies

■nx(t) = rnin[r2x(t), r12(t)]

(see Definition 2). Aliev [l] proved for h\y] =0 that

rim(0 = min[fi2i(0, rn2(t)]

and purported to prove that

(1) fim(<) = min[r2n(0, rns(0]

but his proof is incorrect. Since yx(f) = nxxx(t) [2], [3], we have vx(t)

= min[rm(i), rxxz(t)]. Theorem 1 gives a much easier proof of this

result, establishes the validity of (1) (this was left as an open question

in [4]), and gives an nth order generalization of these results. The

simplicity of the Theorem 1 is due to a theorem of Sherman [5] which

gives that if b>nx(t), then there is a nontrivial solution of /„[y]=0

with a simple zero at t and whose first n zeros on [t, b) are simple zeros.

2. Definitions and main result. Before we state the main result we

make the following definitions.

Definition 1. A nontrivial solution y of ln[y] =0 is said to have a

ix — ii— • • • —iv (v = 2, ■ • ■ , n, ^Zt_i4 = «, l^iyf^n — 1) distribu-

tion of zeros on [t, b] provided there are numbers tx, - • • ,t, such that

t^t0<tx< ■ ■ ■ <t,£b and y has a zero at each tk of order at least ik.

Definition 2. The extended real number r*.,<j...«,0) is the infimum

of the set of b>t such that there is a nontrivial solution y of ln[y] =0

having an ix—i*— • • • —i. distribution of zeros on [t, b].

Remark 1. If t^tx<t2< • ■ ■ <^<r,l<2...,■„(*)§= °°> then there is a

unique solution u(x) of P[y] =0 satisfying

yW>(4) = Aik,
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k = l, 2, • ■ ■ , v;j = 0, 1, • • • , in where the Ajk are constants.

Definition 3. For l^p-^n — 1

sP(t) = >-.1.!---.n_1(0

where ip = 2 and 4 = 1 for k^p.

We now state our main result.

Theorem 1. For 1 gjVfcgw —1

171ft) = minfoft), sk(t)].

Proof. If 771ft) = oo, then the theorem is obvious and, hence, we can

assume that 771ft) exists. Clearly rji(t) ^pft)=-min[5yft), sk(t)], and so

it suffices to show that the assumption 171ft) <p(t) leads to a contradic-

tion. By Theorem 1 in [5] there is a nontrivial solution u(x) of ln[y] =0

whose first n zeros, say xk, l^k^n, are simple zeros where t = Xi<x2

< • • ■ <xn<p(t). We can assume that j<k. Since t = xi<x2< ■ ■ ■

<xn<Sj(t) there is a unique solution v(x) of ln[y] =0 satisfying

y(xi) = 0,        y'(Xj) = 0,        y(xk) = 1,

where i = l, • • • , k — 1, k + 2, • • • , n unless k = n — 1 in which case

i = l,2, •••,» — 2 (see Remark 1). It is easy to see that i>fte)>0 for

Xt^x^Xk+i. It follows from Lemma 1.1 in [6] that there is a non-

trivial linear combination of u(x) and v(x) with a double zero in

(xk, xk+x). But this same linear combination has zeros at Xi,

i = l, • • • , k — 1, k+2, • ■ • , n unless k = n — 1 in which case

i = l, 2, • • • , n — 2. This contradicts t = Xx<x2< - • • <x„<sk(t) and

the theorem is proved.

It follows from Theorem 1 that at most one of the numbers sp(t),

l^p^n — 1, is greater than r)x(t). Many examples can be given to

show that we do not have 771ft) =sp(t) for 1 ̂ p^n — l. For w = 3 see

Hanan [7]. A simple example for n = 4 is yiv+y' = 0 for which we

have r/ift) = $ift) =s2(t)~t + 5.9<s3(t)= 00 [s]. For those equations

of the form

yiv + p(x)y = 0,        p(x) < 0

for which 771 (/) exists we have 771ft) =si(t) =s3(t) <s2(t) = 00  [4], [<>].
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