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Let X be a compact connected re-manifold without boundary. We

assume a cohomology theory satisfying the continuity axiom as well

as the Eilenberg-Steenrod axioms and defined on a class of spaces

which includes the compact manifolds, e.g., the Alexander theory on

the category of compact pairs [3, Chapter 6, §4 et seq.]. The coeffi-

cient group throughout will be the additive group Z of integers if X

is orientable and the group Z2 of integers mod 2 if X is nonorientable.

For standard results in the algebraic treatment of manifolds one may

consult Eilenberg-Steenrod [l, Chapter 11, §6] or Spanier [3, Chap-

ter 6]. We denote the g-dimensional cohomology group of X by

H9(X); if q = 0, H"(X) is taken to be the reduced zero-dimensional

group.

For a closed proper subset A of X let i: A^>X he the inclusion map.

The purpose of this note is to prove the following theorem.

Theorem 1. The subset A separates X if and only if

i*:Hn-i(X)-*H"-1(A)

is not surjective.

We shall need some preliminary notions and results; for details

see Wallace [4] or Keesee [2].

The inclusion i: A-^X induces homomorphisms i*: Hq(X)—>H"(A);

if eEH"(X) we shall denote i*(e) by e\A, and if uEHq(A) is in the

image of ** we shall say that u can be extended to X.

Let eEH"(X) and let M he a closed proper subset of X such that

e\ M?±0 but e\ N = 0 for every closed proper subset N of M. Then M

is called a minimal support for e.

Let A he a closed subset of X and eEH"(A). An irreducible mem-

brane for e is a closed subset R of X such that e cannot be extended

to R\JA but can be extended to SKJA for each closed proper subset

SoiR.
We have the following results.

(i) There exists a minimal support for each nonzero element of

H"(X). Each minimal support is connected.

(ii) If eEH"(A) cannot be extended to X, then e has an irreducible

membrane R in X. Furthermore, e\ (RC\A) =e09^0, R is an irreducible
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membrane for e0, R=(R—A)~, and R — A is connected.

(iii) If 7? is an irreducible membrane for an element in 77"_1(^4),

then R — Ais open in X.

The proof of (iii) is similar to that in [2, Theorem 1.5].

The following lemma extends a familiar theorem for spheres to

arbitrary manifolds. Recall that in a cohomology theory satisfying

the continuity axiom on the category of compact pairs, every com-

pact triad is proper and the associated Mayer-Vietoris sequence is

exact.

Lemma I. If A is a closed proper subset of the n-manifold X, then
Hn(A)=0.

Proof. Suppose eEH"(A), e^O. Without loss of generality, we

may assume that A is a minimal support for e.

Since A is not all of X, there is a point x in the boundary of A and

we can find a coordinate nbd Uoix whose boundary intersects X — A.

The boundary of U, d U, is an 5n_1, and d U(~\A = R is a closed proper

subset of S«~l; thus Hn~1(R)=0. Let S = A-U, T=UnA; then

SC^T = R and SVJT = A. Consider the portion of the Mayer-Vietoris

sequence of the triad (A; S, T):

■ ■ ■ -+ H"-1^) -> Hn(A) ^> Hn(S) © H"(T) -* • • • .

Since Hn~1(R) =0, j is injective. Thus j(e)^0. But 5 and T are

closed proper subsets of A, and since A is a minimal support for

e, e\ S = e\ T—0, which implies that/(e) = (e\ S, e\ T) =0.

Lemma 2. 7/7? is an irreducible membrane for an element in Hn~1(A),

then R — A is a component of X — A.

Proof. Since 7? — A is connected, it is contained in some component

Cof X— A. Suppose R — A is not all of C. Then we have C — R^Hi,

R-A^\J, and (R-A)\J(C-R) = C. Now (R-A)~ = R, so (R-A)~
r\(C-R) = \J- Since R-A is open in X, it follows that (C-R)~
f\(R — A) = □. But this implies that C is not connected.

We are now ready to prove the separation theorem.

Theorem 2. A separates X if and only if i*: Hn~1(X)^Hn~l(A) is

not surjective.

Proof, (a) Suppose A separates X; X—A =P\JQ, P is separated

fromQ, P and Q nonempty. Let R = A\JP, S = A\JQ; then RC\S = A
and RVJS = X. Consider the portion of the Mayer-Vietoris sequence

for (X; R, S):
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i' 8 j'
■ ■ ■ -> fl,»-1(ic) 0 H»-l(S) -> H»~l(A) -> H"(X) -+ Hn(R)

e h*(s) -*••-.

Now t*: Hn~1(X)—*Hn~l(A) surjective would imply i' surjective,

8 = 0, and j' injective. This is impossible since Hn(X)^0 and Hn(R)
®Hn(S)=0.

(b) Now suppose X — A is connected, and assume that i* is not

surjective. Then there is an element eEUn~l(A) that cannot be

extended toZ;e has an irreducible membrane R in X.

By Lemma 2, R — A is a component of X — A and thus R— A

= X-A. This implies that RKJA =X.
Let U be a coordinate nbd in R — A such that U does not intersect

4. Now, since R is an irreducible membrane for e, e can be extended

to an element

e E H"~'(A \J(R- U)) = Hn~l(X - U).

The boundary of U is an Sn~l; and e\ 5"_15^0, for if it were, e could

be extended to RKJU (see [2, Theorem 1.2]). Consider the portion

of the Mayer-Vietoris sequence for (X; U, X—U):

■ ■ ■ -» h*-hu) e ff"-1^ - u) -^ hb-1(5»-1) -^ #"(ao

-> £T»(F) e #"(X - <7) -> • • • .

Since the last group is trivial, 8 is surjective. Thus

#n-l(5„-r)/Tm f  «  ff-fX).

Now Im i'9^0, since we know that e\ S"~19i0. If X is orientable the

isomorphism above becomes Zn^Z for some re?^l; if X is nonorient-

able it becomes JTn(A')=0. In either case we have a contradiction.

Corollary 1. The subset A separates X if and only if

j*: Hn(X, A) -^H"(X)

is bijective.

We also obtain the following well-known characterization of sets

that separate spheres [2 ].

Corollary 2. A closed proper subset A of Sn separates Sn if and

only if H"-1 (A) ?*Q.

The author wishes to thank the referee for his helpful suggestions.
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