A SEPARATION THEOREM FOR MANIFOLDS

RUSSELL G. BRASHER

Let X be a compact connected n-manifold without boundary. We assume a cohomology theory satisfying the continuity axiom as well as the Eilenberg-Steenrod axioms and defined on a class of spaces which includes the compact manifolds, e.g., the Alexander theory on the category of compact pairs [3, Chapter 6, §4 et seq.]. The coefficient group throughout will be the additive group Z of integers if X is orientable and the group Z_2 of integers mod 2 if X is nonorientable. For standard results in the algebraic treatment of manifolds one may consult Eilenberg-Steenrod [1, Chapter 11, §6] or Spanier [3, Chapter 6]. We denote the q-dimensional cohomology group of X by $H^q(X)$; if q=0, $H^q(X)$ is taken to be the reduced zero-dimensional group.

For a closed proper subset A of X let $i: A \rightarrow X$ be the inclusion map. The purpose of this note is to prove the following theorem.

THEOREM 1. The subset A separates X if and only if

$$i^*: H^{n-1}(X) \to H^{n-1}(A)$$

is not surjective.

We shall need some preliminary notions and results; for details see Wallace [4] or Keesee [2].

The inclusion $i: A \to X$ induces homomorphisms $i^*: H^q(X) \to H^q(A)$; if $e \in H^q(X)$ we shall denote $i^*(e)$ by $e \mid A$, and if $u \in H^q(A)$ is in the image of i^* we shall say that u can be extended to X.

Let $e \in H^q(X)$ and let M be a closed proper subset of X such that $e \mid M \neq 0$ but $e \mid N = 0$ for every closed proper subset N of M. Then M is called a *minimal support* for e.

Let A be a closed subset of X and $e \in H^q(A)$. An irreducible membrane for e is a closed subset R of X such that e cannot be extended to $R \cup A$ but can be extended to $S \cup A$ for each closed proper subset S of R.

We have the following results.

- (i) There exists a minimal support for each nonzero element of $H^q(X)$. Each minimal support is connected.
- (ii) If $e \in H^q(A)$ cannot be extended to X, then e has an irreducible membrane R in X. Furthermore, $e \mid (R \cap A) = e_0 \neq 0$, R is an irreducible

membrane for e_0 , $R = (R - A)^-$, and R - A is connected.

(iii) If R is an irreducible membrane for an element in $H^{n-1}(A)$, then R-A is open in X.

The proof of (iii) is similar to that in [2, Theorem 1.5].

The following lemma extends a familiar theorem for spheres to arbitrary manifolds. Recall that in a cohomology theory satisfying the continuity axiom on the category of compact pairs, every compact triad is proper and the associated Mayer-Vietoris sequence is exact.

LEMMA 1. If A is a closed proper subset of the n-manifold X, then $H^n(A) = 0$.

PROOF. Suppose $e \in H^n(A)$, $e \neq 0$. Without loss of generality, we may assume that A is a minimal support for e.

Since A is not all of X, there is a point x in the boundary of A and we can find a coordinate nbd U of x whose boundary intersects X-A. The boundary of U, ∂U , is an S^{n-1} , and $\partial U \cap A = R$ is a closed proper subset of S^{n-1} ; thus $H^{n-1}(R) = 0$. Let S = A - U, $T = \overline{U} \cap A$; then $S \cap T = R$ and $S \cup T = A$. Consider the portion of the Mayer-Vietoris sequence of the triad (A; S, T):

$$\cdots \to H^{n-1}(R) \to H^n(A) \xrightarrow{j} H^n(S) \oplus H^n(T) \to \cdots$$

Since $H^{n-1}(R) = 0$, j is injective. Thus $j(e) \neq 0$. But S and T are closed proper subsets of A, and since A is a minimal support for e, $e \mid S = e \mid T = 0$, which implies that $j(e) = (e \mid S, e \mid T) = 0$.

LEMMA 2. If R is an irreducible membrane for an element in $H^{n-1}(A)$, then R-A is a component of X-A.

PROOF. Since R-A is connected, it is contained in some component C of X-A. Suppose R-A is not all of C. Then we have $C-R \neq \Box$, $R-A \neq \Box$, and $(R-A) \cup (C-R) = C$. Now $(R-A)^- = R$, so $(R-A)^- \cap (C-R) = \Box$. Since R-A is open in X, it follows that $(C-R)^- \cap (R-A) = \Box$. But this implies that C is not connected.

We are now ready to prove the separation theorem.

THEOREM 2. A separates X if and only if $i^*: H^{n-1}(X) \rightarrow H^{n-1}(A)$ is not surjective.

PROOF. (a) Suppose A separates X; $X - A = P \cup Q$, P is separated from Q, P and Q nonempty. Let $R = A \cup P$, $S = A \cup Q$; then $R \cap S = A$ and $R \cup S = X$. Consider the portion of the Mayer-Vietoris sequence for (X; R, S):

$$\cdots \to H^{n-1}(R) \oplus H^{n-1}(S) \xrightarrow{i'} H^{n-1}(A) \xrightarrow{\delta} H^n(X) \xrightarrow{j'} H^n(R)$$

$$\oplus H^n(S) \to \cdots$$

Now $i^*: H^{n-1}(X) \to H^{n-1}(A)$ surjective would imply i' surjective, $\delta = 0$, and j' injective. This is impossible since $H^n(X) \neq 0$ and $H^n(R) \oplus H^n(S) = 0$.

(b) Now suppose X-A is connected, and assume that i^* is not surjective. Then there is an element $e \in H^{n-1}(A)$ that cannot be extended to X; e has an irreducible membrane R in X.

By Lemma 2, R-A is a component of X-A and thus R-A=X-A. This implies that $R \cup A=X$.

Let U be a coordinate nbd in R-A such that \overline{U} does not intersect A. Now, since R is an irreducible membrane for e, e can be extended to an element

$$\bar{e} \in H^{n-1}(A \cup (R-U)) = H^{n-1}(X-U).$$

The boundary of U is an S^{n-1} ; and $\bar{e} \mid S^{n-1} \neq 0$, for if it were, e could be extended to $R \cup U$ (see [2, Theorem 1.2]). Consider the portion of the Mayer-Vietoris sequence for $(X; \overline{U}, X - U)$:

$$\cdots \to H^{n-1}(\overline{U}) \oplus H^{n-1}(X-U) \xrightarrow{i'} H^{n-1}(S^{n-1}) \xrightarrow{\delta} H^n(X)$$
$$\to H^n(\overline{U}) \oplus H^n(X-U) \to \cdots.$$

Since the last group is trivial, δ is surjective. Thus

$$H^{n-1}(S^{n-1})/{\rm Im}\ i'\approx H^n(X).$$

Now Im $i' \neq 0$, since we know that $\bar{e} \mid S^{n-1} \neq 0$. If X is orientable the isomorphism above becomes $Z_n \approx Z$ for some $n \neq 1$; if X is nonorientable it becomes $H^n(X) = 0$. In either case we have a contradiction.

COROLLARY 1. The subset A separates X if and only if

$$j^*: H^n(X, A) \to H^n(X)$$

is bijective.

We also obtain the following well-known characterization of sets that separate spheres [2].

COROLLARY 2. A closed proper subset A of S^n separates S^n if and only if $H^{n-1}(A) \neq 0$.

The author wishes to thank the referee for his helpful suggestions.

BIBLIOGRAPHY

- 1. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J. 1952.
- 2. J. W. Keesee, Sets which separate spheres, Proc. Amer. Math. Soc. 5 (1954) 193-200.
 - 3. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
 - 4. A. D. Wallace, A theorem on end points, An. Acad. Brasil. Ci. 22 (1950), 29-33.

STEPHEN F. AUSTIN STATE COLLEGE