ON A THEOREM OF REPRESENTATION OF LATTICES

S. P. WANG¹

Let G be a connected Lie group, Γ a discrete subgroup of G and μ a fixed right Haar measure of G. μ induces a measure $\bar{\mu}$ over G/Γ , the homogeneous space of left cosets of Γ . Γ is called a *lattice of* G if $\bar{\mu}(G/\Gamma)$ is finite. We denote the set of all representations of Γ in G, i.e., all homomorphisms from Γ into G by $\Re(\Gamma, G)$. We shall give $\Re(\Gamma, G)$ the compact-open topology, Let H be any closed subgroup of G. We use U^H to mean the *induced unitary representation* of G by the trivial one dimensional unitary representation of G. In this note, we are going to prove the following

PROPOSITION. Let G be a connected semisimple Lie group without compact factor, Γ a lattice of G and $\{r_n\}$ a sequence of representations of Γ in G. If $\Gamma_n = r_n(\Gamma)$ are discrete for all n and $\lim_n r_n = 1_{\Gamma}$, then the trivial representation of Γ is weakly contained in $\{\bigoplus U^{\Gamma_n} | \Gamma \}$.

As a consequence of the preceding proposition and results in [3] and [6], one can establish the following

THEOREM. Let G be a connected semisimple Lie group with each factor of R-rank ≥ 2 , Γ a lattice of G and $\{r_n\}$ a sequence of representations of Γ in G. If $r_n(\Gamma)$ are all discrete and $\lim_n r_n = 1_{\Gamma}$, then $r_n(\Gamma)$ are lattices of G for sufficiently large values of n.

In general the theorem is not true without the restriction on the R-rank of each factor of G. This can be illustrated by the classical counterexample in the case of the upper half-plane: the Hecke groups Γ_c generated by

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$,

for $c \ge 2$. They are all isomorphic to Γ_2 , but only Γ_2 is a lattice.

Before we give the proofs of the proposition and the theorem, let us verify some lemmas needed later.

LEMMA 1. Let G be a semisimple Lie group without compact factor, Γ a lattice of G and $\{r_n\}$ a sequence of representations of Γ in G such that $\Gamma_n = r_n(\Gamma)$ are all discrete. If $\lim_n r_n = 1_{\Gamma}$, then we have

Received by the editors November 9, 1968.

¹ The author would like to thank the referee for helpful suggestions.

² For weak containment, see [2].

- (i) $\{\Gamma_n\}$ is uniformly discrete, i.e., there exists a neighborhood V of identity e in G with $\Gamma_n \cap V = \{e\}$ for all n.
- (ii) $\Gamma \cap Z(G)$ is of finite index in Z(G) and $r_n |_{\Gamma \cap Z(G)} = 1_{\Gamma \cap Z(G)}$ for sufficiently large value of n, where Z(G) is the center of G.

PROOF. Since Γ is a lattice, by the density theorem of lattices [1], $Z(G)\Gamma$ is also a lattice. Hence it follows easily that $\Gamma \cap Z(G)$ is of finite index in Z(G). Let \hat{G} be the Lie algebra of G and $Ad: G \rightarrow GL(\hat{G})$ the adjoint representation of G. By the density theorem [1], $l(Ad(\Gamma))$, the linear span of $Ad(\Gamma)$ in $End(\hat{G})$, equals l(Ad(G)). Since $\lim_n r_n = 1_{\Gamma}$, dim $l(Ad(\Gamma_n)) = \dim l(Ad(\Gamma)) = \dim l(Ad(G))$ for sufficiently large n. Therefore $l(Ad(\Gamma_n)) = l(Ad(G))$ holds for large n. It follows in particular that the $r_n(\Gamma \cap Z(G))$ are central for large n. As Z(G) is discrete and $\Gamma \cap Z(G)$ finitely generated, $r_n \mid_{\Gamma \cap Z(G)} = 1_{\Gamma \cap Z(G)}$ for sufficiently large n.

LEMMA 2. Let G be a Lie group, μ a Haar measure, and U, V, W three μ -measurable subsets of G. If $\mu(V-W) + \mu(W-V) < \epsilon$, then

$$|\mu(U-V)-\mu(U-W)|<\epsilon.$$

PROOF. $U-V=(U-(V\cup W))\cup((W-V)\cap U)$ and $U-W=(U-(V\cup W))\cup((V-W)\cap U)$. Hence

$$|\mu(U-V)-\mu(U-W)| \leq \mu(V-W)+\mu(W-V) < \epsilon.$$

COROLLARY 3. Let U and V be two finite μ -measurable open subsets of G and $(\gamma_1^{(m)}, \dots, \gamma_n^{(m)}) \in G^n$ such that $\lim_m (\gamma_1^{(m)}, \dots, \gamma_n^{(m)}) = (\gamma_1, \dots, \gamma_n) \in G^n$. Then

$$\lim_{m} \mu(U - V\gamma_1^{(m)} - \cdots - V\gamma_n^{(m)}) = \mu(U - V\gamma_1 - \cdots - V\gamma_n).$$

PROOF. Let W be any finite μ -measurable open subset of G. Then the function $f_W(x) = \mu(W - Wx)$, $x \in G$ is continuous. Hence

$$\lim_{m} \mu(V\gamma_i - V\gamma_i^{(m)}) = 0 \quad \text{and} \quad \lim_{m} \mu(V\gamma_i^{(m)} - V\gamma_i) = 0,$$

for $1 \le i \le n$. Then by Lemma 2, the corollary follows immediately.

COROLLARY 4. Let U and V be two finite μ -measurable open subsets, Γ a discrete subgroup of G and $\{r_n\}$ a sequence of representations of Γ in G such that $\lim_n r_n = 1_{\Gamma}$. Then $\lim_n \sup \mu(U - V\Gamma_n) \leq \mu(U - V\Gamma)$ where $\Gamma_n = r_n(\Gamma)$ for all n.

PROOF. As Γ is a discrete subgroup of G, Γ is countable. Let $\Gamma = \{\gamma_1, \cdots, \gamma_i, \cdots \}$ and $U_n = U - V\gamma_1 - \cdots - V\gamma_n$. Then $\{U_n\}$ is a decreasing sequence of finite μ -measurable subsets of G. Since $\bigcap_n U_n = U - V\Gamma$, $\lim_n \mu(U_n) = \mu(U - V\Gamma)$. Let ϵ be any positive number. There exists a positive integer N such that $0 \leq \mu(U_n) - \mu(U - V\Gamma) < \epsilon$ for all $n \geq N$. Let $\gamma_i^{(m)} = r_m(\gamma_i)$, $i = 1, 2, \cdots$. Clearly $\lim_m (\gamma_1^{(m)}, \cdots, \gamma_n^{(m)}) = (\gamma_1, \cdots, \gamma_n)$. Thus by Corollary 3,

$$\lim \mu(U-V\gamma_1^{(m)}-\cdots-V\gamma_N^{(m)})=\mu(U_N)<\mu(U-V\Gamma)+\epsilon.$$

Since $\mu(U-V\Gamma_m) \leq \mu(-V\gamma_1^{(m)}-\cdots-V\gamma_N^{(m)})$ for all m, $\lim_m \sup \mu(U-V\Gamma_m) \leq \mu(U-V\Gamma)+\epsilon$. However ϵ is an arbitrary positive number. This implies

$$\limsup \mu(U-V\Gamma_n) \leq \mu(U-V\Gamma).$$

Now we are ready to prove the proposition and the theorem.

PROOF OF THE PROPOSITION. By Lemma 1, there exists an open neighborhood W of e in G such that $W^{-1}W\cap\Gamma_n=\{e\}$ for all n. By constructing it properly, we can find a fundamental domain F of Γ such that $W\subset F$ and the boundary of F has 0 μ -measure. Let V be the interior of F. It is clear that $\mu(V)=\bar{\mu}(G/\Gamma)<\infty$ and $\mu(xV-V\Gamma)=0$ for all $x\in G$. Therefore by Corollary 4, $\lim_n \mu(xV-V\Gamma_n)=0$. Let $\bar{\mu}_n$ be the invariant measure of G/Γ_n induced from μ . Then we have

$$\bar{\mu}_n(xV\Gamma_n - V\Gamma_n) = \bar{\mu}_n((xV - V\Gamma_n)\Gamma_n)$$

$$\leq \mu(xV - V\Gamma_n), \quad \text{for all } n,$$

and all $x \in G$. Hence $\lim_n \bar{\mu}_n(x V \Gamma_n - V \Gamma_n) = 0$. Since $W^{-1}W \cap \Gamma_n = \{e\}$ and $W \subset V$, $\bar{\mu}_n(V \Gamma_n) \ge \mu(W)$. Now let $\{\gamma_1, \dots, \gamma_m\}$ be any finite subset of Γ . We have $\lim_n \bar{\mu}_n(\gamma_i V \Gamma_n - V \Gamma_n)/\bar{\mu}_n(V \Gamma_n) = 0$, $1 \le i \le m$. Now denote the characteristic function of $V \Gamma_n$ in G/Γ_n by χ_n , i.e., $\chi_n(g\Gamma) = 1$ or 0 according as $g \in V \Gamma_n$ or not, and $f_n = \bar{\mu}_n(V \Gamma_n)^{-1/2}\chi_n$. By the definition of induced representation, f_n is in the Hilbert space of the unitary representation U^{Γ_n} . Due to our construction, $\lim_n \langle \gamma_i f_n, f_n \rangle = 1$, $1 \le i \le m$. Therefore the trivial representation of Γ is weakly contained in $\{ \oplus U^{\Gamma_n} | \Gamma \}$.

PROOF OF THE THEOREM. We shall prove it first for the case when G has no nontrivial center. Suppose the theorem to be false in this case. Then there is a subsequence (n') of (n) such that $\Gamma_{n'}$ are not lattices of G for all n'. By the proposition, the trivial representation I of Γ is weakly contained in $\{\bigoplus U^{\Gamma_{n'}} | \Gamma\}$. However Γ has property (T) of [3] and [6]. It follows that I is a subrepresentation of $\bigoplus U^{\Gamma_{n'}} | \Gamma$. Therefore $I \subseteq U^{\Gamma_{n'}} | \Gamma$ for certain n', say n'. Then by Lemma

3.4 in [6], $U^{\Gamma_{n'0}}$ contains the trivial representation of G. By Lemma 8.2 in [4], $\Gamma_{n'0}$ has to be a lattice of G, which contradicts our choice of (n'). Next we shall reduce the general case to the previous one. Let Z(G) be the center of G. By Lemma 1 (ii), $Z(G) \cap \Gamma$ is a subgroup of finite index in Z(G) and $r_n|_{Z(G)\cap\Gamma}=1_{Z(G)\cap\Gamma}$ for sufficiently large n. Denote G/Z(G), $\Gamma Z(G)/Z(G)$, $\Gamma_n Z(G)/Z(G)$ by \overline{G} , $\overline{\Gamma}$ and $\overline{\Gamma}_n$ respectively. Clearly for large n, r_n induce $r_n\colon \overline{\Gamma} \to \overline{G}$ such that $r_n(\overline{\Gamma}) = \overline{\Gamma}_n$. Since $r_{n|Z(G)\cap\Gamma}=1_{Z(G)\cap\Gamma}$ for large n and $Z(G)\cap\Gamma$ is of finite index in Z(G), the $\overline{\Gamma}_n$ are discrete for large n. Therefore \overline{G} , $\{\overline{r}_n\}$, and $\overline{\Gamma}_n$ satisfy the conditions of the theorem and \overline{G} has no nontrivial center. By what we have just proved, the $\overline{\Gamma}_n$ are lattices of \overline{G} for large n, one concludes readily that the Γ_n are lattices of G for sufficiently large n.

As suggested by the referee, the proposition and theorem can be generalized slightly in the following case. Γ is a finitely generated group, $r_0: \Gamma \rightarrow G$ a homomorphism whose image is a lattice, and $r_n: \Gamma_n \rightarrow G$ homomorphisms whose images are discrete, and which tend to r_0 . It is easy to see that the slightly more general form can be obtained from the following lemma and our results.

LEMMA 5. Let G be a connected Lie group, Γ a finitely generated group, $r_0: \Gamma \to G$ a homomorphism whose image is discrete, and $r_n: \Gamma \to G$ homomorphisms whose images are uniformly discrete and which tend to r_0 . Then there exist $r'_n \in R(r_0(\Gamma), G)$ such that $r_n = r'_n \cdot r_0$ for large n and $\lim_n r'_n = 1_{r_0(\Gamma)}$.

PROOF. Let $\{\gamma_1, \dots, \gamma_{2m}\}$ be a set of generators of Γ such that $\gamma_i^{-1} = \gamma_{i+m}$, $1 \leq i \leq m$. Denote $r_i(\gamma_j)$ by $\gamma_j^{(i)}$, $1 \leq j \leq 2m$, $i = 1, 2, \dots$. By the same argument as used in Theorem 4 [7], we know that there are finitely many relations R_1, \dots, R_N satisfied by $(\gamma_1^{(0)}, \dots, \gamma_{2m}^{(0)})$ such that for any $(x_1, \dots, x_{2m}) \in G^{2m}$ satisfying R_1, \dots, R_n and close enough to $(\gamma_1^{(0)}, \dots, \gamma_{2m}^{(0)})$, the map $\gamma_j^{(0)} \to x_j$ $(1 \leq j \leq 2m)$ extends to a homomorphism of $r_0(\Gamma)$ into G. Since the $r_n(\Gamma)$ are uniformly discrete and $\lim_i \gamma_j^{(i)} = \gamma_j^{(0)}$, $1 \leq j \leq 2m$, one sees easily that $\gamma_j^{(0)} \to \gamma_j^{(i)}$, $1 \leq j \leq 2m$ extend to homomorphisms $r_i' : r_0(\Gamma) \to G$ for large i. Now the lemma follows immediately.

BIBLIOGRAPHY

- 1. A. Borel, Density properties of certain subgroups of semisimple groups without compact factor, Ann. of Math. (2) 72 (1960), 179-188.
- 2. J. M. G. Fell, Weak containment and induced representation of groups, Canad. J. Math. 14 (1962), 237-268.
- 3. D. A. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen 1 (1967), 71-74.

- 4. G. W. Mackey, Induced representation of locally compact groups, I. Ann. of Math. (2) 55 (1962), 101-139.
- 5. H. C. Wang, On a maximality property of discrete subgroup, with fundamental domain of finite measure, Amer. J. Math. 89 (1967), 124-132.
- 6. S. P. Wang, The dual space of semi-simple Lie groups, Amer. J. Math. (to appear).
- 7. ——, Limit of lattices in a Lie Group, Trans. Amer. Math. Soc. 133 (1968), 519-526.

INSTITUTE FOR ADVANCED STUDY