RADICAL AND SEMISIMPLE CLASSES WITH
SPECIFIED PROPERTIES

W. G. LEAVITT

AssTrACT. Conditions are given on a radical (semisimple)
property to ensure the existence of a construction for the smallest
radical (semisimple) class with the property, containing a given
class of rings. This generalizes earlier results on smallest hereditary
or strongly hereditary radical classes, and hereditary semisimple
classes. In the last section certain classes of rings are shown to ad-
mit a construction for the largest radical (semisimple) class con-
tained in the given class. This leads to theorems on largest radical
(semisimple) classes dual to the already established smallest
theorems.

1. Introduction. Let W be an arbitrary universal class of (not neces-
sarily associative) rings. For a subclass MCW a subclass ® 2N with
a specified property is said to be a smallest class containing 9 with
the property if ®C3C for all 329N with the property. The hereditary
radical and strongly hereditary radical [1] are examples of properties
admitting smallest classes for any subclass 91 of an arbitrary uni-
versal class. We will give a sufficient condition on a radical property
that it admit smallest classes (Theorem 1). The proof yields, in fact,
a construction (for an arbitrary 91T) of the smallest radical with the
specified property. Theorem 2 gives an analogous construction for
certain smallest semisimple classes. A special case is the result [2,
Theorem 2] for hereditary semisimple classes.

In the last section is considered the dual problem of largest sub-
class, namely, for a given class 9, a subclass of M with a specified
property and containing all subclasses of 9 with the property. Cer-
tain classes are shown to admit constructions for largest radical or
semisimple classes. This construction also yields an easy way of con-
structing the “upper hereditary radical” of Rjabuhin [3]. It is then
found possible to “dualize” in such a way that (with suitable restric-
tions) the concept of largest radical class is dual to smallest semi-
simple class. Similarly largest semisimple and smallest radical become
dual.

In the constructions we use a number of class functions. These
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include the lower radical £91 [4, p. 13] which is the smallest radical
class containing 91, and the hereditary closure 991 [S, p. 1114] which
is the smallest hereditary class containing 9. Other useful functions
are M = {RE’W[ for every 01 <R there is some O;ﬁI/JQEfm} (we
use the notation I <R to mean I is an ideal of R), and UM = { REW|
for every 07 R/I there is some 0 J <{R/I with JEEE}TZ} It is well
known that when 9 is radical 89 is its semisimple class, and when
I is semisimple its radical class is UIN.

2. The smallest radical construction. Write 3 for the class of all
subclasses of W and ® for the class of all radical subclasses of W. We
will call a function F: ®—3 admissible if it has properties (i) ®C F@®
for all PE®, (ii) if @, ®.ER with @, S @, then F®,C F®,, and (iii)
if {®=}Z® defined for all ordinals @ and such that a<g implies
®.C @, then for @ a radical class, ®=U,®, implies F*CU, F@,.

THEOREM 1. If F is admissible and 9N an arbitrary subclass of W,
then there exists a smallest ME R such that MM and Fan =9In.

PrOOF. Let 9M;= £ and if B is a nonlimit ordinal define 9
=L£FMg_y. For B a limit ordinal let Mg=LU,<p M., and write
g =U9m, taken over all ordinals 8. We know by (i) that 9Ms_
C Ftg_; C My, so a<B implies M, N for all ordinals «, B. Also I
is a union of radical classes and so is homomorphically closed. To
show 91 is a radical class we thus need only show (see e.g. [4, p. 4])
that it has property

(A). If REW is such that for all 0% R/I there is some 0% J AR/I
with JEN, then REIM.

But then JEMNT, for some a and since the collection of all such J
is a set there must be a largest «, say . Thus all JEM, and since
91, is a radical class this implies REIM,CIN. Thus MER and by
(i), MCFon. But FMCUs Fong by (iii) and since FONzC Mgy, it
follows that FaRCon. Thus FIN =9IN. Finally suppose M ® where
®PE R and F® =@®. Since £IM is the smallest radical containing 97, we
have 9, E@®. Thus suppose for induction that M, C@ for all a<p.
Then £U.cs M, CLP=6F when B is a limit ordinal. Otherwise
M1 S @ whence FI_; S FP=¢@ and so Mz LP=¢@. Thus by in-
duction MC@.

COROLLARY 1. Every class MW is contained in a smallest heredi-
tary radical class and a smallest strongly hereditary class.

Proor. This follows from the admissibility of both g and 9G, where
G is defined as in [1, (2), p. 704].
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3. The smallest semisimple construction. In [2] a class IM'D M
was called an s-completion of M if it has the property

(B). If REa' thenforevery 051 <R thereexistssome0 =1/JE&M’.
It is well known that 9’ is semisimple if M’ also satisfies

(C). For any ReW, if for every 0#I <R, there exists some
0#I/JEM', then REM' (see e.g. [4, p. 5]). It is also well known
[4, p. 7] that if 9’ satisfies (B) then UM’ is a radical class such that
M’ C8UM’ with SUNM' the smallest semisimple class containing 9N'.
We will call a function F: 3—3 s-admissible if it has the properties (i)
F9N is an s-completion of N for all ME 3T, (ii) if M N then FINC Fa,
and (iii) if Y is the class of all semisimple subclasses of W and
{sma, Usma} Cy, where a<f implies M, CMg, then FUM,)
CUF(Ma).

THEOREM 2. Let F be an s-admissible function. Then for all MET
there exists a smallest NEY such that MM and FIM =

Proor. Define 9, =8UFM and for B a nonlimit ordinal define
Mg =SUFIMy_;. Otherwise define IMg="U,cs M, and write M =UM,
taken over all ordinals 8. Clearly o <8 implies 91, C 91, and since 91
is the union of semisimple classes it has property (B). We thus have
MCsUIM. But if RESUM then for every 0=I <R there is some
0=I/JEm. Thus I/JEM, for some ordinal @, and so for ¥ the
largest such ordinal we have all such I/J&EM,. Since M, SN,
and 9, is semisimple, it follows from (C) that REM, ;..
Accordingly 91 =8$UIK is semisimple. Now 9 C Fan and the reverse
inequality follows from (iii). Finally it is clear by induction that if
IMC N where I is a semisimple class for which F3U =9 then s 9.

Since 9 is s-admissible we have

COROLLARY 2. Every class MW is contained in a smallest hereditary
semisimple class.

4. Largest radical and semisimple classes. In this section we will
consider the dual problem of largest radical or semisimple classes
with given properties. This discussion will be based on the following
construction of a largest radical class, and an analogous construction
(Theorem 4) of a largest semisimple class.

THEOREM 3. If 9N is a class containing a largest class My satisfying
condition (A) then there exists a largest ®E R such that ®CM and a
largest hereditary radical class IS @S IMN.

ProoF. For each integer n>1 define M, = { REM,|if 0£R/I
then 05 J <\ R/I for some JEM.}. Then set ® =NNM,. For induction
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assume that 91, has property (A) for all k<% and suppose REW to
be such that every 0% R/I has a nonzero ideal in 9,,;. Since M,y
C I, these ideals are all in 9, so by property (A) R&IN,. But then
by definition REN,y1, and so M,,1 has property (A). Thus by
induction ® has property (A). Also if R is an image of an REIM,
then any nonzero image of R has a nonzero ideal in 91,.

By property (A) REIM, and so RE® implies RE®. Thus @ is
homomorphically closed and so is a radical class.

Now if @’'CIN with ®’'&® then @' has property (A) and so
®'CM;. Assume for induction that @’'C9IN,. If RE®’ then REM,
and since ¢’ is radical every 0= R/IC®' CM,. Thus @' CM,41 and
so by induction ®’C 9N, for all #n. Therefore ®'C® and so @ is the
largest radical class contained in 9N.

To construct the largest hereditary radical let 3¢ = {RE(P| d {R} ce } .
Clearly 3¢ is hereditary. In fact it is the largest hereditary subclass
of ®, for if VC® with U hereditary then RE® implies 4 { R} CVC .
Thus RE3C and so V3. Now 3¢ @ so that 3 L3 ®. But by [6]
L£3C is hereditary and so £3C3C. Thus J¢=£3C and is the largest
hereditary radical contained in ®. But ® contains all radical sub-
classes of 9M so IC is also the largest hereditary radical class con-
tained in 9.

Remark that in [3] Ju. M. Rjabuhin gave a construction (valid
only for associative or alternative rings) for the “upper hereditary
radical” which is the largest hereditary radical class contained in a
class satisfying condition (A). The Rjabuhin result is thus a special
case of the above theorem. Our construction is also considerably
simpler than that of [3]. Also in this paper, certain classes 91, are
defined (for all ordinals &) whose union is the “lower hereditary radi-
cal.” However this is just the smallest hereditary radical class con-
taining a given class 9, that is, by [6], £991.

Note that it is quite possible for ® (or 3¢) to be zero:

ExXAMPLE 1. Let ‘W be an arbitrary universal class containing J® K,
where J and K are nonisomorphic simple rings with unit. Then the
class 9= {0, J® K} has property (A), since if JOK <R then J®K
is a direct summand of R. However 0 is the only radical class con-
tained in M.

Also remark that Theorem 3 does not apply to all 9 since there
exist classes not containing a largest (or even a maximal) radical or
hereditary radical class. One such case is:

EXAMPLE 2. Let ‘W be any universal class large enough to contain
an infinite set U of simple rings. It is well known that if 91 is homo-
morphically closed, a simple ring RELI if and only if REIN. Thus
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if @ and ® are subsets of VU then ANLBC ANBCL(GN®). Since
by [6] £® is hereditary, it is easy to see by induction that @,NL®
C£(@N®) for all ordinals a. Thus £@NER =£(AN®). Let {®:} be
the set of all finite subsets of U and let M =UL®;. Suppose ® is a
radical subclass of 9. By what we just showed, there is for each
K& ® a unique minimal subset ® of U such that K& £@®. If the union
of all such ®’s (for all K& @) were infinite we would be able to choose
a sequence K;E® (¢=1, 2, - - - ) such that K;EL®; and such that
U®; is infinite. But K= Z@K.E@gsm and so K&E£® for some
finite set ®. Then all K;E£® and by the minimality of the B; we
would get ®; S ®. Thus the contradiction UB;C®. We conclude that
®C L@ for some finite set ®, and so ® is not maximal.

Note that there are classes satisfying Theorem 3 which do not
themselves satisfy condition (A):

ExaMPLE 3. Using the same rings as in Example 1, the class
{O, J, JEBK} does not have property (A), since it does not contain
J@® J, but does satisfy Theorem 3.

By a somewhat analogous construction we obtain

THEOREM 4. Let MEJ contain a largest class My satisfying condi-
tion (C). Then there exists a largest Q&Y such that QM.

PrOOF. If B2 2 is a nonlimit ordinal define 91 = { RE Mg, for all
05 ] < Rthereissome 07 I/JEMg_; }. Otherwise define Mg = Nocg Ma,
and write @ =9, taken over all ordinals (.

Notice that the radical in Theorem 3 is obtained at the first trans-
finite ordinal (as N9, taken over all integers n), whereas here we may
need to take the intersection over all ordinals.

Assume for induction that all 91, for a <@ satisfy condition (C).
Let REW be such that every 051 <R has an image 07#1/J&NM;.
If B —1 exists, then since 913 C 9M_; which has property (C), it follows
that REMg_;. But then by definition RE M. If B is a limit ordinal
then I/JEM, for all a<B so again by the induction hypothesis
REIM,, and so RENIM, =M. Thus Mg has property (C) and the
induction is complete. Clearly a similar proof shows that also @ has
property (C).

Now let REQ and consider any 051 <R for which all 05<1/J &Q.
Since @=N9Mg, in particular RE M, so I has at least some 05=1/J
€M, Since I/J & Q there must exist some « such that I/J& M, but
I/J €M,y1. If v is the largest ordinal for which 91T, contains a nonzero
homomorphic image of I, then all 051/J € 9M,;;. But REM,» so
that every nonzero ideal of R, and in particular I, has a nonzero
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image in M,4;. This contradiction shows that @ has property (B) and
hence is in Y.

Finally, let 3¢ €Y with 3CC M. Then 3 has property (C) so IS M.
Assume for induction that J¢C I, for all @<, then clearly 3¢C M,
when 8 is a limit ordinal. Thus suppose JCC Mg, then if REJFC by
(B) every 0#I <R has some 0#1/JE3CNM_;. Thus by definition
REM,, so by induction RE M, for all B, whence 3¢CQ.

Note that we can construct a class containing no maximal semi-
simple class, using a countably infinite subset {R;} (t1=1,2,---)
of the set U of Example 2. Let FIN denote the smallest hereditary
semisimple class [2] containing 9. Set 9N, =F{R;} and for n=1
define 9M,p1=F(M,\J{R.11}). Then let M =U, 9M,, and suppose
QCIN is semisimple. If there were no n such that QC M, then we
could find an infinite ascending sequence of integers {n,} such that for
some K;&Q we would have K;EM,.,, K; €M,,1. But K = Z @ K.€Q
so K& M, for some n. Thus since 9, is hereditary we would have all
K,e9M,. From this contradiction we conclude that QC9n, for
some 7. Since a simple ring is in FO if and only if it is in 9 (when 9N
is hereditary) it follows that 91, (and hence @) is not maximal. Also
note that in Example 1 the class M =su{J}\U{K} does not have
property (C) but does contain a largest class $U { J } with property (C).

We will use the constructions of Theorems 3 and 4 to establish
“largest” theorems dual to the smallest theorems of §§2 and 3.

THEOREM 5. Let F:3—3 be s-admissible, then any class 9N contain-
ing a largest class My with property (A) contains a largest ®E R such
that FS® =S$@.

ProoF. By Theorem 3, 9N contains a largest ® < ®. By Theorem 2,
there exists a smallest MEY such that $CC I and FIM =M. Thus
C=UMCUS® =P IM. If 36CIM is a radical class then 3 ® and so
8$®C83. Thus if FS¥c=83C then by minimality M Cs3C. Therefore
=UsHCUM=@® and hence @ is the largest subclass of 9 for
which F$@ =$§0.

Note that for Theorem 5 the function F only needs to be defined
for the semisimple subclasses of W. Note that a property p of radical
classes defines a subclass of ®, namely the class of all PE®R with
property p. Conversely any UC ® defines a property of radical classes,
and similarly any X C Y defines a property of semisimple classes. Let
VC®R and XY be called dual if ®E U if and only if S®PE X. Note
that ® and ¢ are themselves dual.

CoROLLARY 3. Let VCE®R and XCY be dual. Then every class M
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containing a largest class My with property (A) contains a largest class
®CEV if and only if every NEY s contained in a smallest Q& X.

Proor. The sufficiency is proved in precisely the way of the proof
of Theorem 5, replacing “Fo=9m" with “ME X.” Thus let NEY.
Then UN is a radical class, so itself has property (A). Thus if ?CUN
is a largest subclass with @&V it clearly follows that TCS$® where
S®E& & and is the smallest member of X containing 9.

As an application we have from [2]:

COROLLARY 4. Any class M containing a largest class My with prop-
erty (A) contains a largest radical class with hereditary semisimple class.

The corresponding duality theorem for semisimple classes is proved
in a similar way and will be stated without proof:

THEOREM 6. Let F: R—3 be admissible, then any class M containing
a largest class MMy with property (C) contains a largest QEY such that
FUuQ=uaq.

COROLLARY 5. Let VC®R and XY be dual. Then every class M
containing a largest class M, with property (C) contains a largest class
QE X if and only if every 3CE R is contained tn a smallest @& V.

From this theorem it clearly follows that such a class contains a
largest semisimple subclass whose radical is hereditary [6] or strongly
hereditary [1].

The dualization may also be taken relative to a specific class:

COROLLARY 6. Let VC®R and XY be dual. Let 9N have a largest
subclass with property (A) and let ® be the largest radical subclass of M.
Then 9 has a largest ® 0V if and only if S® is contained in a smallest
QE X. Similarly, if I has a largest subclass satisfying (C) and largest
semisimple class Q, then I contains a largest QE X if and only if UQ is
contained 1n a smallest ® E0.

Note that the condition that 9 have a largest subclass with prop-
erty (A) (or property (C)) is sufficient for the theorems of this section.
It is not known whether or not the condition is also necessary, but
it is expected that in general it will not be.
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