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Abstract. A necessary and sufficient condition is proved that a

set of points \r„eiln} in the unit disk be the set of zeros of an analytic

function with infinitely differentiable boundary values for every

choice of [rn}, 0<r„<l and ^(1 — rn) < °°.

1. Introduction. The algebra Aw is the class of all functions analytic

in the open unit disk D with all derivatives bounded in D or, alterna-

tively, the class of all bounded analytic functions with boundary

values f(eie) =limr^.i/(rei9) having infinitely many continuous deriva-

tives. Beurling [l, p. 13], Carleson [2], and Novinger [5] have char-

acterized the boundary zeros of such functions, while Taylor and

Williams [6] have discovered several further properties of this class

relating to zeros. Little, however, is known about the zeros within D

beyond a few partial results (see [4] and [8]).

In this paper, an apparently unrelated sufficient condition on the

points is presented (Theorem 2). If z„ = r„el9» satisfy the Blaschke

condition and if the closure of the set {e'9»: n= 1, 2, • • • } of projec-

tions of the points to the boundary Tof D forms a Carleson set, then

there is a nonzero function /G A" such that/(z„) =0. Thus the points

may converge to their limit set as tangentially as desired provided

they are "well spaced out."

Together with a slightly altered version of the construction in [4],

Theorem 1, this result provides a necessary and sufficient condition

that {rnei6n} be the zeros of an A" function for every choice of {r„},

0<r„<l and £(l-r„)<«>.

The construction requires some knowledge of Ax functions in other

domains than the unit disk. This is discussed in §2, where the ana-

logue of the Carleson-Novinger result on boundary zeros is formu-

lated in a simply-connected Jordan domain with smooth boundary.

§3 is devoted to some growth estimates used in the construction.

Finally, the construction forms §4 of this paper.
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2. Boundary zeros of A" functions. Let R be a domain in the

complex plane, and let ACC(R) = {f:fM is analytic and bounded in R,

for n = 1, 2, • • • }. In this section the possible boundary zeros of

functions in AX(R) are determined for a Jordan domain R with a

smooth boundary, i.e., R is bounded by a rectifiable Jordan curve

w = w(s), where w is infinitely differentiable with respect to arc

length j.

Lemma 1. If R is a Jordan domain with smooth boundary, then if \{/ is

the mapping function from R to the unit disk D, \{/EAx(R) and 4>

= \f/-1EAa(D). Moreover, <p'(z)yi0for zED.

Proof. That <pEA°°(D) follows from a theorem of Kellogg (see

[7]): if the boundary function w has n + 2 bounded derivatives with

respect to arc-length (wS; 1), then <p has n + 1 bounded derivatives in

D, and thus n derivatives continuously extendable to the closed disk

D. Warschawski also showed <p'(z) is nowhere zero in D. Thus it is

possible to solve for the derivatives of \p in terms of those of </>, and

therefore they are bounded in R.

A Carleson set E is a closed set of measure zero contained in the

unit circle T for which, if the intervals complementary to E have

lengths €„, ^e„ log e„> — <». Novinger [5] showed that every

Carleson set is the set of boundary zeros of an .A00 function, while

Beurling [l] proved that the zeros in T of any function, analytic in

D and continuous in D which satisfies a Lipschitz condition on T,

must form a Carleson set.

We define a Carleson set for a Jordan domain R with smooth

boundary dR to be a closed set EEdR of linear measure zero, whose

complementary arcs satisfy the same finiteness condition. The follow-

ing lemma is an easy consequence of the boundedness of the first

derivatives of the mapping functions.

Lemma 2. If R is a Jordan domain with smooth boundary, xf/ is the

mapping function from R to the unit disk, and EQdR, then E is a

Carleson set in dR if and only ifij/(E) is a Carleson set in T.

Theorem 1. Let R be a Jordan domain with smooth boundary. If f is

analytic in R and continuous in R, and if f satisfies a Lipschitz condi-

tion on dR, then the zeros of f in dR form a Carleson set in dR. Con-

versely, if E is a Carleson set in dR, there is a function f'£ Ax which has

a zero of infinite order at each point of E (i.e., /(j)(z) =0, j = 0,1,2, • • •

for zEE), and no other zeros.

Proof. If / is analytic in R and satisfies the Lipschitz condition

|/(zi) — f(zi)| ^K\zi— z2\" for zi, z2EdR, then by Lemma l,fo<p is
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analytic in D and satisfies a Lipschitz condition of the same order,

where <p is the mapping function from D to R. By Beurling's proof,

the zero set of / o <p is a Carleson set, and by Lemma 2, the boundary

zero set of / is a Carleson set in dR.

If A is a Carleson set in dR, Novinger's construction provides a

function gEAx'(D) vanishing on <p_1(A) and nowhere else. By Lemma

L/ = go<£~1 is the desired function.

3. Magnitude of Blaschke products and A°° functions. In this

section we present some estimates on the derivatives of Blaschke

products and A" functions. Similar estimates were proved by

Wells  [8].
If zkED and   ^j(l — \zk\) < oo, then the Blaschke product with

zeros zk,

t-t   zk     zk — z

B(*)=n.T—r-——'
I Zk |    1 — zkz

converges in D to a bounded analytic function with radial limits

B(e'e) of modulus 1 almost everywhere. Any bounded function /

analytic in D has a factorization/= FB, where A is a Blaschke prod-

uct and F has no zeros. Thus estimates of the growth of the deriva-

tives of Blaschke products are essential to the construction.

Lemma 3. If B is a Blaschke product with zeros zk = rkeiBk, where

r*> 1/2, then there is a sequence of positive numbers Ay for which, if A

is any subproduct of B,

| A o>(«) |   = Ay dist(z, A)-2',       j = 1, 2, • • • ,

where K= {l/zk: fe = 1, 2, • • • }.

Proof. Differentiating B,

B'(z) = ZBk(z)    'k~_\t>
k-i (1 — ZkZ)2

where Bk(z) =B(z)(l — zkz)/(zk — z). The modulus of B' is thus

bounded by

± j^- s ± ^4 s s «* *)- ± a - ,).
jt_i   |1— zkz\l      k-i   \zk   — zy k-i

Since this estimate improves if a subproduct is taken in place of B,

the lemma holds for j=l.

Suppose that constants Ay have been determined for which the

inequality holds for indices j ^m. Then there exist positive numbers

amj such that
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I A <m+%) |   ^ ± (1 - rk) ± ami| A(r\z) \ \ 1 - zkz{'^
k=l 3=0

and

| A<-+»(«) |   ^ E (1 - rk) £ a^yiV^yl 1 - z*z|-<>+2> dist(z, #)-*«->•>
fc=l 3=0

by the inductive hypothesis. Since § dist(z, K) ^ 11 — zkz\ ^2, this is

bounded by

(oo m \

Z (1 - '*) E amjNm-j22*2) dist(z, /Q-^+i),
t=i y-o /

and the estimate holds for A{m+l).

Lemma 4. If fEAx(R) and f has a zero of infinite order at zoEdR,

and the line joining z to z0 lies in R, then there are positive constants

Mjk for which

|/°>(«)|   ^Mjk\z-z0\k,       j,k = 0,1,2,- ■ ■.

This lemma is easily proved by integrating f^k+'+l)k times.

4. Construction of an A™ function with given zeros. In this section

the required function is constructed after the construction of a curve

which is fundamental to the argument.

Lemma 5. If RkeiBk is a sequence of points outside the unit disk with

limit points in a closed set E of zero Lebesgue measure in T, there is a

rectifiable curve r = h(6) which is Cx with respect to arc-length, and for

which Kh(9k)^Rk.

The proof is left to the reader.

Theorem 2. // {e'*n: n = l, 2, • • • } is a set of points on the unit

cirdewhose closure is a Carleson set, and if 0<rn<l and X)(l — rn)< °°,

there is a function fEA" for which f(rnea") =0. Conversely, if {r„ei6«}

is contained in the zero set of an A" function for every choice of {r„\,

0On<l and ]C(1—r»>)< °°> then {eie"}~ is a Carleson set.

Proof. Let z„ = r„e,9«£D, where the closure of {e*»:» = l, 2, • • • }

is a Carleson set and 23(1 — rn)< «>. We may assume rn>l/2, for

otherwise the function resulting from ignoring the points z„ with

rn ^ 1/2 can be multiplied by the finite Blaschke product with those

zeros.

By Lemma 5, there is a C°° curve r = h(8) between the unit circle

and the points i?„ew", where J?„ = inf {l/rk:6k =0n}, and h(6)>l unless

etf is a limit point of {z„}. This curve will form the boundary of a
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Jordan domain R. Let A= {l/z„: n=l, 2, ■ • ■ }, and let E be the

closure of the set of points h(dn)eie«. It is clear that A is a Carleson set

in dR. By Theorem 1, there is a function FGA°°(A) which has a zero

of infinite order at each point of E. Further, the restriction of F to D

is in A»(D).

Let B be the Blaschke product with zeros z„, and let/(z) = F(z)B(z)

for zED. By Lemma 4, \f^(z)\ ^Mjk dist(z, E)k^Mjk dist(z, A)* for

some constants Mjk and j, k = 0, 1, • • ■ . By Lemma 3 there are con-

stants Ay for which | A«'(z)| ^JV> dist(z, A)-2>'. If zGA

I /<"(«) |   =   Z (3) F^(z)B«\z)   S £ f.) My_i.2,Ai,
i=o W ,=o W

so/0'' is bounded, j = 1, 2, • • • .

Conversely, if {e!'?»}~ is not a Carleson set, a slight modification

of the construction in Theorem 1 of [4] yields a sequence {rn} for

which {rne*9*} is not contained in the zero set of any function with

finite Dirichlet integral, and thus not of any A°° function.

Necessary conditions are difficult to find. Carleson's formula for

the Dirichlet integral [3] yields the condition

/>2jr                             1    _     I   .    ll
log Z j—-r- dt < co

nil    _    rt I
o I e zn\

which he used to create the counterexample in [4]. This, the Blaschke

condition, and the requirement that the limit points lie in a Carleson

set seem to be all that is known. The distance from these conditions

to the known sufficient conditions is rather great.
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