GENERATORS OF S_{α}

JONATHAN I. GINSBERG ${ }^{1}$

In this paper we will discuss the algebras of functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|<\infty$ with $\|f\|_{\alpha}=\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|, \alpha \geqq 1$. When $\alpha=0$ we have the algebra l_{1} (which we will henceforth denote by l) about which it is conjectured that the obvious necessary condition for f to generate, i.e. that f separate points, is also sufficient, but thus far it has been proven only that it is sufficient if f separates points and $f^{\prime} \in H^{1}[\mathbf{1}]$.

We show here that if $\alpha \geqq 1$ then the obvious necessary conditions for f to generate, i.e. that f separate points and $f^{\prime} \neq 0$ in the closed unit disc, are also sufficient.

Definition. S_{α} is the Banach space of analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for which $\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|<\infty \quad$ and $\|f(z)\|_{\alpha}$ $=\sum_{S_{\alpha=0}}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|, \alpha$ real.
S_{α} is an algebra if and only if $\alpha \geqq 0$.
Definition. C is the algebra of functions $f(z)$ continuous in $|z| \leqq 1$ and analytic in $|z|<1$, with $\|f\|_{C}=\max _{|z| \leqq 1}|f(z)|$. This norm is denoted by $\|f\|_{\infty}$.

Lemma 1 (Carathéodory-Walsh). If $f(z) \in C$ and separates points for $|z| \leqq 1$, then f generates C.

Proof. This is an immediate corollary of the theorem in [3, p. 36].
Lemma 2. (1) $\|j\|_{\alpha} \geqq \min \left(1,2^{\alpha}\right)\left\|f^{\prime}\right\|_{\alpha-1}$.
(2) $\|f\|_{\alpha} \leqq \max \left(1,2^{\alpha}\right)\left\|f^{\prime}\right\|_{\alpha-1}$, if $f(0)=0$.

Proof. $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}$, $\|f\|_{\alpha}=\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|, \quad$ and $\left\|f^{\prime}\right\|_{\alpha-1}=\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n+1}\right|$ $=\sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right|$.

$$
\begin{aligned}
\|f\|_{\alpha} & =\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right| \geqq \sum_{n=1}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|=\sum_{n=1}^{\infty} n^{\alpha}\left(\frac{n+1}{n}\right)^{\alpha}\left|a_{n}\right| \\
& \geqq \min \left(\frac{n+1}{n}\right)^{\alpha} \sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right| \geqq \min \left(1,2^{\alpha}\right)\left\|f^{\prime}\right\|_{\alpha-1}
\end{aligned}
$$

and (1) is proven.
Received by the editors April 2, 1969.
${ }^{1}$ Part of a doctoral thesis at Yeshiva University.

$$
\text { If } \begin{aligned}
f(0)=a_{0} & =0 \text { then } \\
\qquad\|f\|_{\alpha} & =\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right| \\
& =\sum_{n=1}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|=\sum_{n=1}^{\infty} n^{\alpha}\left(\frac{n+1}{n}\right)^{\alpha}\left|a_{n}\right| \\
& \leqq \max \left(\frac{n+1}{n}\right)^{\alpha} \sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right| \leqq \max \left(1,2^{\alpha}\right)\left\|f^{\prime}\right\|_{\alpha-1}
\end{aligned}
$$

and (2) is proven.
Lemma 3. If $\alpha<0$ then $\|f g\|_{\alpha} \leqq\|f\|_{l}\|g\|_{\alpha}$, where $f \in l$ and $g \in S_{\alpha}$.
Proof. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then

$$
\begin{aligned}
\|f g\|_{\alpha} & =\left\|\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) g\right\|_{\alpha} \\
& \leqq \sum_{n=0}^{\infty}\left|a_{n}\right|\left\|z^{n} g\right\|_{\alpha} \leqq\left(\sum_{n=0}^{\infty}\left|a_{n}\right|\right) \max \left\|z^{n} g\right\|_{\alpha} \\
& =\left(\sum_{n=0}^{\infty}\left|a_{n}\right|\right)\|g\|_{\alpha}=\|f\|_{\imath}\|g\|_{\alpha}
\end{aligned}
$$

Lemma 4. If $f(z) \in l$ separates points in $|z| \leqq 1$ and $f^{\prime}(z)$ is continuous in $|z| \leqq 1$ and has no zeroes there, then $f(z)$ generates l.

Proof. We note first that $1 / f^{\prime} \in C$ and

$$
\begin{aligned}
\left\|\sum_{n=0}^{\infty} a_{n} z^{n}\right\|_{-1} & =\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|}{n+1} \leqq\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}\left[\sum_{n=0}^{\infty}\left(\frac{1}{n+1}\right)^{2}\right]^{1 / 2} \\
& =\frac{\pi}{\sqrt{ } 6}\left\|\sum_{n=0}^{\infty} a_{n} z^{n}\right\|_{l_{2}}
\end{aligned}
$$

We then have

$$
\begin{aligned}
\|P(f)-2\|_{l} & \leqq\left\|(P(f)-z)^{\prime}\right\|_{-1} \quad \text { (by Lemma 2) } \\
& =\left\|f^{\prime} P^{\prime}(f)-1\right\|_{-1} \\
& \leqq \frac{\pi}{\sqrt{ } 6}\left\|f^{\prime} P^{\prime}(f)-1\right\|_{l_{2}} \leqq \frac{\pi}{\sqrt{ } 6}\left\|f^{\prime}\right\|_{\infty}\left\|P^{\prime}(f)-\frac{1}{f^{\prime}}\right\|_{\infty}
\end{aligned}
$$

and by Lemma $1 f$ generates C so $\left\|P^{\prime}(f)-1 / f^{\prime}\right\|_{\infty}$ can be made arbitrarily small, and f generates l. (The hypothesis on f^{\prime} can be weakened to $f^{\prime} \in H^{1}$. See [1].)

Theorem 2.1. $f \in S_{\alpha}, \alpha \geqq 1$, generates S_{α} if and only if f separates points in $|z| \leqq 1$, and $f^{\prime}(z) \neq 0,|z| \leqq 1$.

Proof. If f does not separate points, i.e. there are two points z_{1} and $z_{2}\left(z_{1} \neq z_{2}\right)$ in the closed disc with $f\left(z_{1}\right)=f\left(z_{2}\right)$, then for any polynomial P we have

$$
\begin{aligned}
\|P(f)-z\|_{\alpha} & \geqq\|P(f)-z\|_{\infty} \\
& \geqq \frac{1}{2}\left(\left|P\left(f\left(z_{1}\right)\right)-z_{1}\right|+\left|P\left(f\left(z_{2}\right)\right)-z_{2}\right|\right) \\
& \geqq \frac{1}{2}\left|P\left(f\left(z_{1}\right)\right)-z_{1}+z_{2}-P\left(f\left(z_{2}\right)\right)\right|=\frac{1}{2}\left|z_{2}-z_{1}\right|
\end{aligned}
$$

so that f does not generate.
If $f^{\prime}\left(z_{1}\right)=0,\left|z_{1}\right| \leqq 1$, then for any polynomial P we have

$$
\begin{aligned}
\|P(f)-z\|_{\alpha} & \geqq\left\|(P(f)-z)^{\prime}\right\|_{\alpha-1} \quad(\text { by Lemma 2) } \\
& \geqq\left\|(P(f)-z)^{\prime}\right\|_{l}=\left\|f^{\prime} P^{\prime}(f)-1\right\|_{l} \\
& \geqq\left\|f^{\prime} P^{\prime}(f)-1\right\|_{\infty} \geqq\left|f^{\prime}\left(z_{1}\right) P^{\prime}\left(f\left(z_{1}\right)\right)-1\right|=1
\end{aligned}
$$

so that f does not generate, and the necessity of the conditions is proven.

Suppose now that f separates points and $f^{\prime} \neq 0$ in the closed unit disc.

We first show that if f generates S_{α} and $f \in S_{\alpha+1}$, then f generates $S_{\alpha+1}$.

We note that if $f \in S_{\alpha+1}$ then $f^{\prime} \in S_{\alpha}$, and if $f^{\prime} \neq 0,|z| \leqq 1$, then $1 / f^{\prime} \in S_{\alpha}$ by Wiener's theorem [2, p. 299].

If f generates S_{α} then for any $\epsilon>0$ there is a polynomial Q such that $\left\|Q(f)-1 / f^{\prime}\right\|_{\alpha}<\epsilon / 2^{\alpha+1}\left\|f^{\prime}\right\|_{\alpha}$. Then $\left\|f^{\prime} Q(f)-1\right\|_{\alpha} \leqq\left\|f^{\prime}\right\|_{\alpha}\left\|Q(f)-1 / f^{\prime}\right\|_{\alpha}$ $<\epsilon / 2^{\alpha+1}$, and $\|P(f)-z\|_{\alpha+1}<\epsilon$, by Lemma 2 , where P is that primitive of Q for which $P(f)-z$ has constant term zero. Since $\epsilon>0$ was arbitrary, f generates $S_{\alpha+1}$.

Thus it is sufficient to prove the theorem when $1 \leqq \alpha<2$.
For $1 \leqq \alpha<2$ we have

$$
\begin{aligned}
\|P(f)-z\|_{\alpha} & \leqq 2^{\alpha}\left\|P^{\prime}(f) f^{\prime}-1\right\|_{\alpha-1} \leqq 2^{\alpha}\left\|f^{\prime}\right\|_{\alpha-1}\left\|P^{\prime}(f)-\frac{1}{f^{\prime}}\right\|_{\alpha-1} \\
& \leqq 2^{2 \alpha-1}\left\|f^{\prime}\right\|_{\alpha-1}\left\|f^{\prime} P^{\prime \prime}(f)+\frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}\right\|_{\alpha-2}
\end{aligned}
$$

For any polynomial $Q(z)$ this is in turn

$$
\begin{aligned}
& \leqq 2^{2 \alpha-1}\left\|f^{\prime}\right\|_{\alpha-1}\left[\left\|f^{\prime}\left(P^{\prime \prime}(f)-Q(z)\right)\right\|_{\alpha-2}+\left\|f^{\prime}\left(Q(z)+\frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{3}}\right)\right\|_{\alpha-2}\right] \\
& \leqq 2^{2 \alpha-1}\left\|f^{\prime}\right\|_{\alpha-1}\left[\left\|f^{\prime}\left(P^{\prime \prime}(f)-Q(z)\right)\right\|_{l}+\left\|f^{\prime}\left(Q(2)+\frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{3}}\right)\right\|_{\alpha-2}\right] \\
& \leqq 2^{2 \alpha-1}\left\|f^{\prime}\right\|_{\alpha-1}\left\|f^{\prime}\right\|_{l}\left[\left\|P^{\prime \prime}(f)-Q(z)\right\|_{l}+\left\|Q(z)+\frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{3}}\right\|_{\alpha-2}\right]
\end{aligned}
$$

with Lemma 3 being used in the last inequality. $\left(f^{\prime} \in S_{\alpha-1}\right.$ and $f^{\prime} \neq 0$, $|z| \leqq 1$, so that $1 / f^{\prime} \in S_{\alpha-1}$ by Wiener's theorem, $1 /\left(f^{\prime}\right)^{2} \in S_{\alpha-1}$ because $S_{\alpha-1}$ is an algebra, and, differentiating, $f^{\prime \prime} /\left(f^{\prime}\right)^{3} \in S_{\alpha-2}$.)

Since polynomials are dense in $S_{\alpha-2}$ we can first choose $Q(z)$ so that $\left\|Q(z)+f^{\prime \prime} /\left(f^{\prime}\right)^{3}\right\|_{\alpha-2}$ is arbitrarily small and then, since f generates l, we can choose $P^{\prime \prime}$ so that $\left\|P^{\prime \prime}(f)-Q(z)\right\|_{l}$ is arbitrarily small. Thus f generates $S_{\alpha}, 1 \leqq \alpha<2$, and the proof is complete.

References

1. D. J. Newman, Generators in l_{1}, Trans. Amer. Math. Soc. 113 (1964), 393-396. MR 30 \#445.
2. Charles Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960. MR 22 \#5903.
3. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. XX, Amer. Math. Soc., Providence, R. I., 1965. MR 36 \#1672b.

Yeshiva University

