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Abstract. In the Lobachevski plane, horocycles with the same

center are geodesic parallels and are natural replacements for the

lines used in defining the support function of a convex curve and

the notion of constant width in the Euclidean plane. In this paper,

analogs based on horocycles are obtained for Christoffel's formula,

which expresses the radius of curvature of a convex curve in terms

of its support function, and Barbier's theorem, which relates the

length and width of a convex curve of constant width.

1. Introduction. Santalo [4], among others, has employed families

of horocycles in the Lobachevski plane to obtain the analogs of the-

orems of Euclidean geometry which depend upon families of lines in

the Euclidean plane.

In the Lobachevski plane, horocycles are orthogonal trajectories to

families of asymptotically parallel geodesies. Horocycles which are

orthogonal to the same family of asymptotically parallel geodesies

are geodesic parallels and it is natural to base a notion of constant

width on this fact.

In the Euclidean plane, Barbier's theorem states that all curves of

constant width B have the same circumference irB [2, p. 200]. The

proof of this theorem employs the Christoffel formula l/x. = h+h"

where h is the support function in the direction 9, primes denote

differentiation with respect to 6, and k is the curvature of the (convex)

curve at the point of support.

In this note we describe the analogs of the Christoffel and Barbier

formulas for closed curves in the Lobachevski plane which are horo-

cycle convex: every horocycle has at most two points in common with

the curve.

An alternate approach to constant width in the Lobachevski plane,

based on geodesies rather than horocycles, is discussed in Santalo [3].

The author thanks the referee for calling his attention to this paper.

2. Christoffel's formula. Let K=-k2 (k>0) be the Gaussian

curvature of the Lobachevski plane. The absolute is a circle and may
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be given a coordinate 8 (0^8<2w) such that for any point of the

plane, geodesies from that point going to the absolute through the

point 8 give geodesic polar coordinates with 8 as the angular coordi-

nate.

Let 0 be a fixed point of the plane, and let C be a piecewise smooth

horocycle convex curve. For every point 6 on the absolute, there is a

unique horocycle having center at 8, having C on the geodesically

convex side, and meeting C in one point. Let h(8) denote the distance

from 0 to the horocycle along a geodesic emanating from 0 going

through the point 8, and measured positively toward 6. h(8) is the

support function of C.

The curve C may be obtained knowing h(8) since it is the envelope

of a family of horocycles. It is thus possible to compute the geodesic

curvature k of C at the point corresponding to 8 in terms of h alone.

This computation, sketched in paragraph 4, is long but direct and

yields:

1        (g»A _ e-kh)/2k - (k/2)e-kh(h')2 + e~khh"

7 ~ (ekh + e~kh)/2 + (k2/2)e-"h(h')2 - ke~khh" '

The term appearing in the numerator is ds/d8, the derivative of arc

length.
Note that in the limit k—+0, this formula gives the Christoffel

formula in the Euclidean case.

3. Barbier's theorem. Let C be horocycle convex and h(8) its

support function. The length of C is given by

/» 2t / gkh _  g—kh fc \
L = J     (-1- e~khh"-e-kh(h')2\ de.

Let h be the support function for C constructed as was h but with C

on the geodesically concave side of the horocycle. Replacing h by h

in the integral gives again the length of C, but with a change of sign.

The condition that C be of constant width B is expressed by h

= h — B. From the two expressions for L we obtain:

Theorem. The length of a horocycle convex curve C of constant width

B is given by
\ — e~kB riT

L =- I     e*\f0.
2k     J0

Note that in the limit k—>0 we obtain Barbier's theorem.

In the Lobachevski plane, not all curves of the same constant width

have the same arc length. For example, the geodesic circle of constant
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width B has length L = 2ir(sinh(kB/2)/k), while a Reuleux triangle

of constant width B has length L = 6(sinh kB/k) arcsin(J sech(AB/2)).

4. Computations. We work in Weierstrass coordinates x, y, z

[5, p. 74], — oo <x, y < oo , z> 1/k. These coordinates are related by

x2+y2— z2= — 1/k2. The Riemannian metric is dx2+dy2 — dz2; the

distance d between the points having coordinates (x, y, z) and

(x0, yo, So) is given by cosh kd= — k2(xx0+yyo — zz0). In terms of

Weierstrass coordinates, geodesies, geodesic circles, and horocycles

are described by linear equations. The absolute is coordinatized as \

described in 2.

The parametric equations

x = e~k'x0 + sinh ks cos B/k2(z0 — Xo cos 0 — yo sin 6),

y = e~k'y0 + sinh ks sin 6/k2(z0 — x0 cos 6 — y0 sin 6),

z = e~k'z0 + sinh ks/k2(z0 — x0 cos 8 — y0 sin 6)

describe the geodesic from the point with coordinates (xo, yo, z0) going

through the point on the absolute with coordinate 8 as arc length

s—»+oo. A fixed value of 6 gives rise to a family of asymptotically

parallel geodesies.

The geodesic circle with center (x', y', z') going through (x0, yo, so)

is described by — k2(x'x+y'y— z'z) = — k2(x'x0+y'yo — z'z0). As

(x', y', z') tends to the point 6 on the absolute, this geodesic circle

tends to the horocycle with center 6 passing through (x0, yo, z0). Its

equation is (x— xi) cos 6+(y—y0) sin 6— (z— z0) =0. For fixed 6, and

various choices of C, the equations x cos 6+y sin 6—z = C represent

parallel horocycles. These are geodesic parallels and any two such

cut off segments of the same length on any geodesic through 6. For

the choices C and C, the length of this segment is (1/&)| log(C/C)|.

Let 0 have coordinates x = 0, y = 0, z = l/k. From the above con-

siderations, the equation x cos 6+y sin 6— z= —(l/k)e~kh represents

the horocycle having center 6 on the absolute and having distance h

from 0, h being measured positive toward 6.

Let h = h(6) be the support function of a piecewise smooth horo-

cycle convex curve C. Then C is the envelope of the horocycles whose

equations are

x cos 6 + y sin 6 - z = - (l/k)e-kh(f).

The equations of C, x, y, and z as functions of 6, are obtained by solv-

ing this equation simultaneously with its derivative with respect to
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8: —x sin 8+y cos 8 = e~khh', and the relation between the coordinates:

x2+y2—z2= —1/k2. They are

x = (— ekh + (— (h')2-)e~** ] cos 6 - e~khh' sin0,
\2* \2 2k J      )

y = (— ekh + ( — (h')2-\-kh) sin(? + e~khh' cos0,

\2£ \ 2 2* /      /

1 /£ 1\
z = — ekh + (— (A')2 + — ) e~kh.

2k \2 24/

The derivative of arc length with respect to 8, ds/d8, is now com-

puted as the square root of (dx/dd)2 + (dy/d8)2 — (dz/dB)2. One obtains

the numerator in the expression for 1/k in 2.

The unit tangent to Cat the point of support for the horocycle with

center 8 has components

u = kh' cos 8 — sin 8,

v = kh' sin 8 + cos 0,

w = kh';

and the unit outward normal to C at the same point has components

(gkh _]_  g-kh           £2 \

-1-e-kh(h')2 J cos 6 - ke~khh' sin d,

(gkh _|_ g—kh          ^2 \

-1-e~kh(h')2 J sin 8 + ke~khh! cos 6,

gkh  _   g—kh fe2
n=-+ — e-kh(h')2.

2 2

The normal is obtained by simultaneously solving the equations

l2+m2 — n2 = l, ul+vm—wn = 0, and xl+ym— zn = 0.

The geodesic curvature k is the component along the unit normal

of the intrinsic derivative of the unit tangent with respect to 5. This

turns out to equal Idu/ds+mdv/ds — ndw/ds. Hence Kds/dd = ldu/d8

+mdv/dd — ndw/dd and for this one obtains the denominator in the

expression for 1/k in 2.

To obtain the formula of the theorem in 3, replace h by h = h — B

in the first expression for L to obtain an expression for — L. Factoring

out ehB and using the original expression for L gives
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gkB  _  g— kB    /» 2i

L = - ekBL -i-I      ekhdd
2k       Jo

from which the theorem follows.

5. Concluding remark. The expression in 2 for 1/k may be inter-

preted as a differential equation for h given the radius 1/k of the

osculating Euclidean circle. If instead we use radius R of the osculat-

ing geodesic circle, related to the former radius by tanh kR/k = l/K,

we obtain

R = h- (1/2*) log(l + k2(h')2 - 2kh").

This yields an algebraic differential equation for h given A'. An ex-

plicit solution to either of these differential equations and their higher

dimensional analogs based on horospheres would permit a study of

the connection between convexity and principle radii of curvature

along the lines of the Euclidean case initiated by Christoffel and

completed by Firey [l].
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