R° IS NOT ALMOST LINDELÖF

J. H. B. KEMPERMAN AND DOROTHY MAHARAM¹

ABSTRACT. It is shown that there exists a Baire measure μ on R^e such that R^e can be covered by elementary open μ -null sets.

A topological space X will be called "almost Lindelöf" if, for every open cover g of X, and every finite Baire measure μ on X, there exist: a countable subcollection $\mathfrak{R} \subset g$, and a μ -null set E, such that $E \cup U\mathfrak{R} = X$. From H. Rubin the authors learnt of the following question: Is R^{\aleph_1} almost Lindelöf? We shall show that, on the continuum hypothesis, the answer is "no".

In fact, without hypothesis, we prove:

There exist, for each cardinal $\mathfrak{M} \geq c$, a cover \mathfrak{S} of $R^{\mathfrak{M}}$ by elementary open sets, and a Baire measure μ on $R^{\mathfrak{M}}$ with $\mu(R^{\mathfrak{M}}) = 1$, such that each $G \subseteq \mathfrak{S}$ is μ -null.²

It is evidently enough to do this when $\mathfrak{M}=c$. Further, to simplify the details, we first work with N^c , where $N=\{1, 2, 3, \cdots\}$, rather than R^c . It will then be easy to derive an example for R^c from the following one for N^c .

Regard N^c as $P \times Q$, where $P = N^{\aleph_0}$ consists of all sequences of positive integers and $Q = N^c$ is regarded as the set N^P of all maps of P into N. For each $p \in P$ and $n \in N$, define

 $G_n(p) = \{(x, y) \in P \times Q : x_k = p_k \text{ for } k = 1, 2, \dots, n, \text{ and } y(p) = n\}.$ Then $g = \{G_n(p) : p \in P, n \in N\}$ is the desired cover of $P \times Q$. It is a cover, because a given $z = (x, y) \in P \times Q$ will belong to $G_n(p)$ where p = x and n = y(x); and it evidently consists of elementary sets.

As a preliminary to defining the desired measure μ , we set up a map $\psi: P \rightarrow P \times Q$ as follows. For $x \in P$, define $\psi(x) = (x, y)$ where $y \in Q$ is specified by:

- (1) $y(p) = \inf\{n \in \mathbb{N}: p_n \neq x_n\} + 1 \text{ if } p \neq x \ (p \in P),$ and
 - (2) y(x) = 1.

(Note that y(p) = 1 if and only if p = x.)

Received by the editors July 28, 1969.

AMS Subject Classifications. Primary 2840, 5440; Secondary 6005.

Key Words and Phrases. Baire measure, uncountable product space, Lindelöf, elementary open set.

¹ Both authors acknowledge support from the National Science Foundation.

² The construction below is the first author's simplification of the second author's construction.

One easily verifies that ψ is Baire measurable; it is enough to verify that the inverse of each elementary subset of $P \times Q$ belongs to the σ -field generated by the elementary subsets of P.

Now take any Baire measure λ on $P = N^{k_0}$, of total measure 1, and such that each singleton has measure 0; an obvious product measure will do this. Define, for each Baire set $B \subset P \times Q$, $\mu(B) = \lambda(\psi^{-1}(B))$. Thus μ is a Baire measure on $P \times Q$, of total measure 1, and we have only to check that $\mu(G_n(p)) = 0$ for each $n \in N$ and $p \in P$. To do this, consider $A = \psi^{-1}(G_n(p))$. If $x \in A$ then $\psi(x) = (x, y) \in G_n(p)$, where y is defined by (1) and (2) above. From the definition of $G_n(p)$, we have $x_1 = p_1, \dots, x_n = p_n, y(p) = n$. If (1) applies here then $y(p) \ge n + 1$, which is impossible. Hence y(p) = 1 and y = x. In other words, either y(x) = 1 is empty or y(x) = 1. In either case, y(x) = 1 thus y(x) = 1, and the proof is complete.

Finally, to transfer the example from N^c to R^c , we consider N^c embedded as a closed subset of R^c in the obvious way. Note that, for each elementary open set G in N^c , there exists an elementary open set H in R^c such that $H \cap N^c = G$. (For instance, if G is $\{z \in N^c : z_\alpha = n_\alpha \text{ for } \alpha = \alpha_1, \alpha_2, \cdots, \alpha_k\}$ we may take $H = \{z \in R^c : |z_\alpha - n_\alpha| < 1/2 \text{ for } \alpha = \alpha_1, \alpha_2, \cdots, \alpha_k\}$.) Apply this to obtain, for each $G_n(p) \in G$, an elementary open set $H_n(p)$ in R^c whose intersection with N^c is $G_n(p)$. Let $\mathcal{K} = \{H_n(p) : p \in P, n \in N\}$; this covers N^c . Express the open set $R^c - N^c$ as the union of a system \mathcal{K} of elementary open sets in any way. Then $\mathcal{K} \cup \mathcal{K}$ is the desired cover of R^c . To obtain the measure on R^c , define (for each Baire subset B of R^c)

$$\nu(B) = \mu(B \cap N^c).$$

Then ν is a finite Baire measure on R^c , and $\nu(H) = 0$ for each $H \in \mathfrak{R} \cup \mathfrak{K}$.

University of Rochester