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Introduction. Let X be a regular Ti topological space and 2X the

space of all closed nonempty subsets of X with the finite topology

[8, Definition 1.7]. In [6] Ivanova has shown that if X is a noncom-

pact ordinal space, then 2X is nonnormal. In this paper we give a new

proof of this fact. This result is then used to show that several proper-

ties of 2X are equivalent to the compactness of X. It is not known if

the normality of 2X is equivalent to the compactness of X. There are

some partial results in this direction though. The paracompactness of

2X is shown to be equivalent to the compactness of X and the nor-

mality of 22 is also shown to be equivalent to the compactness of X.

In the last part of the paper some properties related to the countable

compactness of 2X are investigated.

Notation. Because of our assumptions on X, X= { {x} :x£X} is

a closed subset of 2X homeomorphic to X. The set <5n(X) = {FEX: F

has at most ra points} is also closed. Furthermore, the space 2X is

Hausdorff. For notation and further basic results on hyperspaces see

[7] or [8]. In particular we use (Uu • ■ ■ ,Un)= {AE2x:ACU?=i U{

and A Pi Ui y^0 for alii}. If each Ui is open in X, then {Ui, ■ ■ ■ , Un)

is open in 2X and the set of such sets in 2X forms a basis for 2x. By con-

sidering such basic open sets it is clear that the set 3(X) of finite sub-

sets of X is dense in 2X. We denote the cardinality of a set Z by \z\.

1. The hyperspace of a discrete space. It follows from Ivanova's

result [6], that the hyperspace of an infinite discrete space is nonnor-

mal. We give a new proof of this result based on the following lemma.

Lemma. If X is an infinite discrete space of cardinality o~, then 2X

has a dense subset of cardinality a and a closed discrete subset of car-

dinality 2".

Proof. The set 3(X) of finite subsets of X is dense in 2X with

|SF(A^)| = | X| =o-. To prove the last statement, let X =XAJX2 be a

disjoint union with \Xi\ =a. Letfi'.X—>Xt be a bijection for each *

and let F:2X->2X be defined by F(A)=fi(A)\Jf2(X-A). Let
a= {F(A):ACX}. Now for ACX, letting <u = 2i?M) which is open

in 2X, we have <U.ncl = {F(A)}. Thus a is discrete. Now if BE2X and
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A£a, then either fT1(Br\Xi)KJfi1(Br\Xi)¥X or fr^BC^Xi)
n/r1(AnA2)?£0. In either case one can easily show that B is not

in the closure of Ct. Thus Q, is closed and discrete. It is clearly of car-

dinality 2* since F is an injection.

Theorem 1. If X is infinite and discrete, then 2X is nonnormal.

Proof. Since 2X has a dense subset of cardinality a, there are at

most 2" continuous real valued functions on 2X. But the existence of

ft in the proof of the lemma says that if 2X is normal, then by extend-

ing each characteristic function of each subset of O to all of 2X (as real

valued functions), there must be at least 22' continuous real valued

functions on 2X. Thus we cannot have 2X normal.

Corollary. // 2X is normal, then X is countably compact.

Proof. If A is not countably compact, then there is a closed dis-

crete subset D in X. But then 2D is a closed subspace of 2X. Since 2D is

nonnormal, 2X is nonnormal.

2. Compactness of the hyperspace. We now show that several

properties related to compactness are equivalent to compactness in

the hyperspace.

Definition. A topological space is said to be paracompact if every

open cover has a locally finite refinement [2, p. 162]. It is said to be

metacompact if each open cover has a point finite open refinement

[2, p. 229]. It is meta-Lindelof (countably metacompact in [l ]) if each

open cover has a point countable open refinement.

Lemma. If N is the integers with discrete topology, then 2N is not

meta-Lindelof.

Proof. Since 2N is separable, if it is meta-Lindelof it is Lindelof.

However, 2N is regular [8, Theorem 4.9]. Thus if 2^ is meta-Lindelof,

then 2N is normal contradicting Theorem 1.

Theorem 2. The following are equivalent:

(a) X is compact,

(b) 2X is compact,

(c) 2X is Lindelof,

(d) 2X is paracompact,

(e) 2X is metacompact, and

(f) 2X is meta-Lindelof.

Proof. It is well known that (a) is equivalent to (b) [8, Theorem

4.2]. It will be sufficient to show that (f) implies (a). If 2X is meta-
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Lindelof, then so is X since X is a closed subset of 2X. By the corollary

to Theorem 1 we must have that X is also countably compact. Thus

X is meta-Lindelof and countably compact, hence compact [l].

3. Normality of the hyperspace of the hyperspace. We will now

need the fact that if X is a noncompact well ordered space, then 2X

is nonnormal. This result is due to Ivanova [6] and for completeness

we now include a proof.

Theorem 3. If X is a noncompact ordinal space, then 2X is non-

normal.

Proof. Let X = [0, a) = {7:7 is an ordinal less than a}. By The-

orem 1 we need only consider the case that X is countably compact.

In this case there is no countable cofinal sequence of ordinals in [0, a).

We now give Ivanova's proof for this case. Let Xc = [a, a) for each

a less than a. Then SF = {Xc} is a closed subset of 2X and JF and X are

disjoint in 2X. If 2X were normal, there would be an open set It con-

taining SF whose closure misses X. Let X,E(U\, ■ • • , Un)E^t for

each a where U" is open in X. Let X?G f/?HXo and 0*1 = max {X?}.

Then {\°lt • • • , X°} £(£/?, • • • , U°n). Now let ^EWC^X^ and

«r2 = max{Xi,}.Then {Xj, • • • ,Xj} £<£/?', • • • , J/*1). Continuing this

process inductively we get an increasing sequence of ordinals {0-,}

in [0, a) and a countable collection of finite subsets of X,

\}^:i=l, • • ■ , nj} with the property that {X(}£lt for each j and

{Xj:i = 1, • • • , ray} C[o"y, cy+i]- Let a = sup {ay} which is less than a.

Then in 2X the singleton set {&} is in the closure of 11 since the se-

quence { {\{:i = l, • • ■ , tij}:j=l, 2, 3, • • • } converges to {<r}.

Thus SJ and X cannot be separated in 2X.

Theorem 4. If 22   is normal, then X is compact.

Proof. We will show that there is a limit ordinal a such that

[0, a) can be imbedded as a closed subset of 2X if X is not compact.

The theorem will then follow from Theorem 3 since 2t0a> will then be

a closed subspace of 22 . Now suppose that X is not compact and let

ff be a filter base of closed sets with empty intersection. Let us suppose

that |sf| =0- and that a is the minimum cardinal with the property

that there is such a filter base. That is, if 9 is a collection of closed sets

in X with finite intersection property with | g| less than a, then the

intersection of 9 is nonempty. Identify a with the first ordinal having

that cardinality. Then [0, a) has cardinality a and [0, 7) has car-

dinality less than a for 7 less than a. Then let fF be indexed by

{Fa:a<a}. By transfinite induction we define a sequence {aT:7<<r}



1970] COMPACTNESS IN HYPERSPACES 763

in [0, <r) in the following manner. We let a0 = 0. Having defined ay

let ay+i be the first a such that C\ { Fa:a=ay+i} is properly contained

in n{F„:aga7}. For 7 a limit ordinal, let aY = sup{ax'.X<7}. It is

clear that this process may be continued until PI {Fay} — 0. But this

will require using all 7's less than a by the minimality of <r. Now let

Gy = f\{ Fa:a^ay}. Then Gy is closed and Gy9£0 for all 7. Thus

GyE2x. We now show that {Gy} is our required set.

Claim. The set {GY:7<o-} is a closed subset of 2x.

Proof of claim. If F is an element of 2X and not of {Gy}, then if

F is not contained in any Gy let 11 = 2X — 2<?0. Then 11 is an open set in

2X containing F and containing no element of {Gy}. Now if FEGy

for some 7, then let A =fl {Gy:FEGy}. Then A—G\ where
X = sup{7:FCGT} and F is not contained in Gx+i. Let x£G\ — F and

let 1l = 2x-(ll-2Gx+i. Then F£1I with 11 open and <M.r\{Gy}=0.

Claim. If f(y)=Gy, then / is a homeomorphism from [0, or)

onto {Gy}.

Proof of claim. Clearly / is one to one and onto. We now show

that/ is bicontinuous. Let G\E {Gy} and xEGa — G\+i for any a<X.

Then if n = 2x-w-2Gx+i, then/([a + 1, X])=1in{G7}. Thus/"1 is

continuous. Now let X£ [0, <r) and let G\E(Ui, ■ ■ ■ , U„). Since G\+i

is closed and properly contained in G\ we may assume that

(Ui, ■ ■ ■ , Un)r^{Gy} = {Gy:GyDGx and GyC^"-i Ut] as a typical
basic neighborhood of G\ in {Gy}. Now suppose that the set

{7:GrCU"_i Ui and GyZ}G\} does not contain X in its interior. Then

there is a set {7,,} such that (1) 7<,<X for all a, (2) sup {70} =X, and

(3) Gya is not contained in U?_ 1 Ui for each a. Now {G7a — U?_ 1 Ui}

has the finite intersection property and empty intersection. Thus

{7„} has cardinality <r and {ya} is cofinal in [0, ff), contradicting the

fact that sup {7„} =X<cr. Thus X is in the interior of {7^GTCU?_i Ui

and GyZ)G\} and/ is continuous. Thus/ is a homeomorphism. The

proof of Theorem 4 is now complete.

4. Countable compactness and hyperspaces. We show that 2X can

be countably compact and noncompact. We also give an example of

a countably compact completely regular space X such that 2X is not

pseudocompact.

Definition. A space X is pseudocompact if each real valued con-

tinuous function is bounded. A space is strongly countably compact

if each countable set has compact closure.

If a space is strongly countably compact, then it is countably

compact. If it is countably compact, then it is pseudocompact.

Neither of these implications is reversible in general. The property

of being strongly countably compact has very interesting properties.
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It is productive, closed hereditary, and preserved under continuous

transformation. The next theorem gives an additional result for this

property. The following lemma is well known [9]. (Compare [5, 6.5

(IV), p. 86].)

Lemma. If X is normal and {Fu • ■ ■ , Fk} is a finite collection of

closed subsets of X, then n*=1 ClpxFi = C\px[(X=i Fi].

Proof. We will show this for two closed sets Ft and F2 in X. The

lemma will then follow by induction. Clearly, Clpx(Fir} F2) EClpx Fi

C}C\pxF2. Suppose that x is an element of C\pxFiC\C\pxF2 and not of

Clf,x(Fir\F2). Let x£F with V open in 0X such that Cl^F

r\Clex(Fir\F2) = 0. Then let A,• = FiC\C\x V for i = 1 and i = 2. Then
x is an element of ClpxAir\C\$xA2 since x£Cl/sjrF,- for each i. But

AxC\A2 = 0 since <Z\xVC\(FiC\F2) = 0. By the normality of X we

have C\pxAir\C\pxA2 = 0, a contradiction. Thus C\^x(FiC\F2)

= C\0xFir\C\pxF2.

Lemma. // X is normal and F: 2X—>2"-sr is defined by F(K) = ClpxK,

then F is an imbedding.

Proof. Suppose that F(K)E(Ui, •••,[/„} for KE2X, with each

Ui open in 0X. Let { Vi, • • • , Vn} be a collection of open subsets of

BX with F(K) CW-i Vi, ClxViEUi for each i, and with F(K)
r\Viy±0 for each i. Let 0t=F/\X". One can easily verify that

KE(Ou • • • , On) and that, for L£2* with L£(01, • • • , 0„>,

F(L)E(Ui, ■ ■ ■ , Un).
Now suppose that KE2X with K~E(Ui, ■ • • , Un). Then, of course,

KCU?,! Ui. Thus Kn(f)^! (X- Ui))=0. By the foregoing lemma,

C\fsxKr\(V!}„i (CW(X- Ui))) =0. If we let Oi = 0X-Chx(X- Ui),
then the last statement implies that Cl^x^CU^! 0,-. Thus F(K)

E(0U ■ ■ • ,0n).ButiiF(L)E(0i, ■ ■ ■ , 0„>, then£•£([/,, • • • , Un).
Thus F-1 is continuous from F(2X) onto 2X, and thus F is an imbed-

ding.

Theorem 5. // X is normal and strongly countably compact, then 2X

is strongly countably compact.

Proof. Let F: 2X—»2"x be defined as in the previous lemma. Then,

by the previous lemma, Fis an imbedding. Let (Ki }<*! be a countable

subset of 2X. Let (B be the closure of {F(Ki)\ jLi in 2^x and Q the

closure of {.K\-}f=i in 2X. Since F is an imbedding, F(Q) = &r\F(2x).

If we can show that 05CF(2X), then F(e) = ffi and thus C will be

compact since (B is. Thus it will be sufficient to prove that (&EF(2X).
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Let A* be any element of 03 in 2/3X, and let ClpxKia be a net converg-

ing to A* in 2"x. Let A = A*HA. Now suppose that x£A*-CLjxA.

Then let xEU with U open in BX with [C\pXU]r\[ClpXK] = 0. Since

CLjxA,a—>A*, there must be a 7 such that, for a^7, [Clj.yA.J

r\U¥0. 7h\isKif\U¥0 iora = y. Let A = {i:Kir\U¥0}. Let
aiEKi(~\U ior each iEA. Let A = Clx{a»^£^4 }. Then A is compact

by the strong countable compactness of X. Therefore there is a sub-

net of aia converging to some a£A. One can easily show that a£A*

and thus <z£A*HA = A. But also aEC\pXU and [C\pXU]r\K¥0,

a contradiction. Therefore we must have that A* = Cl^xA. Thus

K*EF(2X) and (BCF(2*).

It would be interesting to know if in Theorem 5 the assumption of

normality can be reduced. At any rate, the theorem is sufficient for

the next application.

Example. Let A be a noncompact countably compact ordinal

space. Then X is strongly countably compact and normal. Thus 2X

is strongly countably compact. Thus we have an example of a non-

compact space X for which 2X is countably compact and hence

pseudocompact.

Example. For each integer n greater than 1, Frolik [3 ] has given an

example of a space X such that Xn~x is countably compact and X" is

not pseudocompact. In the examples X" fails to be pseudocompact

by containing an open and closed copy of the integers A. Let

p: A"—>fJ„(A) be defined by p((xit • • ■ , x„)) = {xx, ■ ■ • , x„}. Then p

is closed and continuous [4]. Now let A be an open and closed copy

of the integers in Xn. Then p(N) is closed in <Sn(X) and thus is closed

in 2X. Now for (xi, • • • , x„) an isolated point in Xn, we have

{xi, • • • , xn] is also an isolated point in 2X. Thus p(N) is open and

closed in 2X. Since p is finite to one, p(N) is infinite and 2X contains

an open and closed copy of the integers. Thus 2X is nonpseudocom-

pact. Thus Frolik's examples give examples of countably compact

completely regular spaces whose hyperspaces are not pseudocompact.

The author would like to express his gratitude to the referee for

his helpful suggestions for improving the paper.

Added in proof. Assuming the continuum hypothesis the author

has been able to show that 2X is normal if and only if X is compact.
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