
A CLASS OF NON-NOETHERIAN DOMAINS

JAMES A. HUCKABA1

Abstract. A new class of non-noetherian domains, called 0-do-

mains, are characterized in the first part of this paper. The second

part is concerned with deciding when the intersection of a 0-domain

with a valuation ring is again a /3-domain.

1. Introduction. Let k be a field and v a nondiscrete valuation

defined on k. All rings under consideration will be subdomains of k

and will contain the multiplicative identity of k. Denote the valuation

ring of v by Rv and its maximal ideal by Mv. A subdomain R of Rv is

called a 8-domain for v in case R contains a sequence {a,-} .'Li with the

property that v(ai)>v(ai)>v(ai) • • • . {a*} is called a 8-sequence for

v in R. In §2 of this paper elementary properties of /3-domains and

/3-sequences are given, /3-domains are characterized (Theorems 1 and

2), and sufficient conditions are given for a ring to be a /3-domain

(Proposition 1).

In general, given two subdomains of a field k it is not possible to

determine whether their intersection is a noetherian domain or a

non-noetherian domain. Recently Heinzer and Ohm, [5], have an-

nounced some results concerning the intersection of noetherian rings

and valuation rings. In particular they have shown that if D and R

are domains with the same quotient field k, and V is a rank one valua-

tion ring of k such that R(£V and D=RC\ V, then:

(i) if V is centered on a finitely generated ideal of D, then V is

noetherian; and

(ii) if V is centered on a maximal ideal of D, then D is noetherian

if and only if R and V are noetherian.

In §3 we prove theorems related to this result. Theorem 3 analyzes

what happens when we consider the intersection of a /3-domain R,

for a rank one valuation v, with an arbitrary valuation ring. Theorem

4 is a version of Theorem 3 when v is assumed to be of rank m> 1.

2. /3-domains and /3-sequences. /3-domains can be characterized

very easily as follows:

Received by the editors July 30, 1969 and, in revised form, September 15, 1969.

A MS Subject Classifications. Primary 1315, 1398.

Key Words and Phrases. Valuation ring, nondiscrete valuations, value group,

maximal ideal.

1 This research was partially supported by NSF Grant GP 11891.

659



660 J. A. HUCKABA [April

Theorem 1. Let R be a subdomain of k. R is a (3-domain for some

valuation v if and only if R contains a sequence {«■}"-! suc^ ^at

{ai/ai+i\i°=1generatesaproperidealintheringT = R[ai/a2,a2/a3, • • • ].

Proof. Suppose that R is a /3-domain for v, then R contains a se-

quence {a,} such that v(ai)>v(ai+i)>0 for all i. Thus {a,/ai+i}

EMvC\Ty±T, where T = R[ai/a2, a2/as, • • • ]. Conversely, let P be

a prime ideal in T containing {a,/aI+1}. If (Rv, Mv) is a valuation

ring in k with center P in T, then 0<i>(a,yaj+i) =v(ai)— v(ai+1) for

each i.    Q.E.D.
We now list, without proof, some elementary properties of j3-

domains and the ring T.

(1) Rv is a /3-domain for v.

(2) All /3-domains are non-noetherian.

(3) Any ring between a /3-domain and i?„ is also a /3-domain.

(4) Any infinite subsequence of a /3-sequence is still a /3-sequence.

Let T be the ring which appeared in Theorem 1 and suppose that A

is the proper ideal of T generated by {a,-/a,-+i} 41!.

(5) Let J be a fixed positive integer. If i<t, then at/atEA. If »><,

then ai/a&T. For all j, l/a,(£r.
(6) For each i, ai+i properly divides a,- in T. Hence, the ideal in T

generated by ai, a2, ■ ■ ■ , as- is principal and is in fact generated by a,-.

Proposition 1. (i) If R is a domain which contains a prime ideal P

such that Rp is a nondiscrete valuation ring, then R is a ^-domain.

(ii) If vis a nondiscrete valuation on a field k and if Rv=Ri, R2, ■ ■ ■ ,

Rn are valuation rings with quotient field k, then R = (")?„ i Ri is a ^-domain.

(iii) If F is a field, and if [Xi}j°„t is a set of indeterminates, then

R = F[Xi, X2, ■ • • ] is a fl-domain.

Proof, (i) Choose a /3-sequence {a,} in Rp = Rv. Write a( = bi/ci

where bi, CiER and c^P. Then v(ai) =v(bi) for all i, which implies

that {bi} is a /3-sequence for v in R.

(ii) Let P = Mvr\R. By [3, Chapter 6, p. 132], we have RP = RV.

Now apply (i).

(iii) The proof of this statement is contained in the following more

general lemma.

First we make the following definition. A finite subset au ■ • ■ ,

a„ER which generates a proper ideal A of R is said to be analytically

independent in case the following property holds: If/(Zi, • • • ,Z„)isa

form of arbitrary degree in i?[Zi, • • • , Z»] such that/(fli, • • • ,a„)=0,

then all the coefficients of/ are in the radical of A. An infinite subset

{a^jjlj in R is analytically independent if  {a,-} generates a proper
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ideal in R and if each finite subset of {a,-} is analytically independent.

Note in particular that the set {A",} in part (iii) of Proposition 1,

is analytically independent.

Lemma. If R contains an infinite analytically independent set, then

R is a B-domain for an appropriate v.

Proof. Let {a,-} be an analytically independent subset of R and

let T = R[ai/a2, a2/<23, • • • ]. In view of Theorem 1, it is sufficient to

show that the ideal generated by ai/at, ai/a3, • • • is a proper ideal

in T. Suppose not, then

T

1 = zZ ai(ai/ai)tli(a2/ai)'" • • ■ (o„/fl„+i)'ni
»=i

where atER and £,-; are nonnegative integers. Let JJ = maxJ_1 {t,i}.

Then

r
/AS n «1    <« '» .      V-* 'l—'l( '»-<»<    'li 'ni
(*)     U = — a2 a3 ■ • • an+i + JL, aia2       • • • an+i   «i   • • • a„ .

<-i

Each term of (*) has degree /"= i tj. Since {o,} is analytically inde-

pendent, — 1 is in the radical of A where A = (ai, • ■ • , an). Hence

A=R, a contradiction. This proves the lemma and also Proposi-

tion 1 (iii).

Many non-noetherian rings contain a sequence {a,}"=1 such that

a,+i properly divides at for all *, (e.g., the ring T of Theorem 1 or any

nondiscrete valuation ring). In the next theorem we characterize

/3-domains which have this property.

Theorem 2. Let R be a domain and let {a,-}(1i be a sequence in R

with the property that each ai+i properly divides ai in R. Then Ciat+i = a,-

where dER- A subsequence of {a^ is a 8-sequence in Rfor an appropri-

ate valuation v if and only if there exists a maximal ideal M of R con-

taining infinitely many c,-.

Proof. Suppose that {c,-} contains an infinite subsequence whose

members lie in M, where iii" is a maximal ideal of R. We define a

subsequence of {a,} inductively. Let bi = ai and assume that bj has

been defined. Then b,=a„ for some n. Choose m>n such that

cm-iEM and define bj+i = am. Then bj — an = Cn • • • cm-iam

= c„ • • • Cm-J>j+i, which implies that bj/bj+iEM. This is true for

all j. Hence [bj] is a /3-sequence for any valuation v having center

MonR.
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Conversely, suppose that {bj} is a /3-subsequence of {a.}. Then

each bj+i properly divides bj, and by Theorem 1 [bj/bj+i] is a subset

of some maximal ideal M of the ring T = R[bi/b2, b2/b3, • • • ]=i?.

Since bj = an = cn ■ ■ ■ cm-iam = cH • • • cra_i&;-+i for appropriate m and

n, there is some n^t^m — 1 such that ctEM. This is true for all j,

hence infinitely many members of {ci\ are in M.    Q.E.D.

The next two corollaries give rings which satisfy Theorem 2.

Corollary 1. Let R be a domain such that each nonzero principal

ideal of R is contained in only finitely many maximal ideals. If R con-

tains a sequence {a,} such that each a<+i properly divides ai in R, then

R is a B-domain.

Proof. Let Mi, • ■ • , M, be the complete set of maximal ideals con-

taining the principal ideal (ai) and suppose that c<a,-+i = a< for all i,

then {d\ CUJ=1 Mj. For suppose not, then there is a cr0EU.M,-. Pick

a maximal ideal M of R containing c,. Since ai = CiC2 • • • crar+i,

aiEM. Hence M is one of the Mj, a contradiction. Therefore {d\

EUMj and it follows that infinitely many c,- are in one of the Mj.

By Theorem 2, R is a /3-domain.    Q.E.D.

A nonzero fractional ideal / of the domain R is divisorial in case /

is the intersection of principal fractional ideals.

Corollary 2. If R is a domain in which each nonzero ideal is divi-

sorial and if R contains a sequence {ai} fLi such that each a,+i properly

divides ai, then R is a B-domain.

Proof. Heinzer has proved, [4, Theorem 2.5], that each ideal of

R is contained in only a finite number of maximal ideals. Apply

Corollary 1.    Q.E.D.

3. Intersection theorems.

Lemma. Let {a,} be a strictly decreasing sequence of positive

real numbers. Then there is a subsequence {Bj} of {a,} such that

{P}—Pj+i}p-i is a- strictly decreasing sequence of positive real numbers.

Proof. Let/3i=a:i and ri = limi"1 at. Letr2' =/3i — n and r2 = r2' /2+ri.

Choose a,-2<r2 and define /32 = a,-2. By induction define rj=/3y_i — rx

and rj = r'j /2+ri. Choose a,-y<ry and define Bj=air {Bj—Bj+i\ is the

required sequence.    Q.E.D.

For the concepts concerning value groups and valuation rings which

are used in the proofs of Theorems 3 and 4, we refer the reader to

[1] and [7].

Theorem 3. Suppose that R is a B-domain for a rank one valuation v
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which is defined on k, the quotient field of R. Let {o,} be a B-sequence

for v in R and let T = R[ai/a2, ai/az, ■ ■ ■ ]. If w is a valuation on k

with valuation ring Rw, then:

(i) // Rw is noetherian, then Rwr\T is a 8-domain for v;

(ii) If Rw is non-noetherian, then RWC\T is a 8-domain for v or

Rwr\Rp is a 8-domain for both v and w with respect to every prime ideal

P of R containing {ai};

(iii) If ai+i properly divides at in R for all i and if Rwr\T is a /3-

domain, then RW(~\R is a B-domain.

Proof. If Rw contains infinitely many members of the sequence

{at}, then by (4) Rwr\R, RWH\T, and RWC\RP are all /3-domains.

So we will assume that Rw contains only finitely many elements of

{a,}. Choose an infinite sequence {at'} of {a,-} such that each a,'(£i?tt.

Again by (4), {as} is a /3-sequence for v in R. Since v is a rank one

valuation, its value group is an ordered additive subgroup of the real

number system. By the lemma, {u(ai')} contains an infinite subse-

quence {f(&j)} such that {v(bj)—v(bi+i)} is a strictly decreasing se-

quence of positive real numbers. Thus by (5) {bj/bj+i} is a /3-sequence

for v in T.

Since Rw is a valuation ring and since each bj(£Rw, we have that

bj-1 is a nonunit of Rw. Suppose thati?„ is a noetherian valuation ring.

Then there is a positive integer 1' such that 0 <w(bi'1) ^wipf1) for

all j. Then ftp+i-Or'+i/*?1)*?1 and bi'XJbi'1 =bv/bv+iERw Define
Ci = bi'/bi'+i. Let 2' be a positive integer >1' such that 0<w(&2^1)

^w(bfl) for all j" > 1'. As above let Ci = bi</bv+iERw By induction

we construct a sequence {ck} so that ck = bk-/bk,+iERw Now v(ck)

— v(ck+i) >0 for all k, hence {ck} is a /3-sequence for v in RWC\T. This

proves (i).

Now assume that Rw is non-noetherian. Consider the previously

constructed sequence {bj}. Suppose there exists no strictly decreasing

infinite subsequences of {wtyf1)}. Then, as in the noetherian case,

we can show that Rwr\T is a /3-domain. On the other hand, suppose

that {bj>} is a subsequence of {bj} such that wQ)^1) >w(bi>l)> • • • .

Let P be any proper prime ideal of R containing {bj}, (certainly any

prime ideal P of R containing {a,} will also contain {fry}). Clearly

b}+l<£P for all/, hence each bj./(b} + l)ERp. Also w[bj,/(b} + l)}

= -w(bj')>0, which shows that each bj./(b} + l)ERwr\RP. By

straightforward computation we see that {bj'/(b} + l)} is a 8-

sequence for both v and w in RwC\Rp. This completes the proof of (ii).

Part (iii) is clear.    Q.E.D.

Our next goal is to prove a version of Theorem 3 for valuations v
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of finite rank m, where m>l. Recall that if G is the value group of v,

then G is order isomorphic to an additive subgroup of <Rm, (R being

the real number system. Order is defined in (Rm as follows: Let

(ai, • • • , am), (Bi, ■ • • , 8m)E<Rm, suppose that a,=/3,- for i<p and

apy±Bp, then («i, • ■ • , am)<(Bi, • • • , Bm) if and only if ap<Bp.

In the situation where v is of rank m> 1, it is necessary to introduce

a stronger condition than that of a /3-sequence. Let R be a sub-

domain of Rv. A sequence {a,} of R is called a B*-sequence for v

in R in case (1) {a{\ is a /3-sequence for v in R, and (2) if v(ai)

= (an, • • • , aim) then a,y=^0 for all i and j. It is clear that if v is a

rank one valuation, then the concepts of a /3-sequence for v and a

/3*-sequence for v are equivalent. However, this is not the case when v

is of rank m > 1. For suppose that v has rank 2 and {a*} is a sequence

of elements in R with the property that v(ai) = (1, — i) for all i. Then

{a*} is a /3-sequence for v, but not a /3*-sequence for z>.2

Theorem 4. 77ze conclusions of Theorem 3 remain valid when v is

assumed to be a valuation of finite rank m>l and {a<} is assumed to

be a B*-sequence for v in R.

Proof. As in the last proof suppose that {a<<} is an infinite subse-

quence of {a,} such that av^Rw for each i'. From now on assume

that G, the value group of v, is actually a subgroup of (Rm. If r is a

positive integer ^m, then Hr= {(ax, • • • , am)EG'.ai=a2= • ■ ■

= ar = 0} is an isolated subgroup of G. All isolated subgroups of G

can be obtained in this way. If Hi, ■ ■ ■ , Hm are the isolated sub-

groups of G, then G=Ho>Hi> • ■ ■ >Hm = (0). It is possible to

choose an infinite subsequence {dk\ of {a^} such that for some

r, v(dk)EHr-i and v(dk)(£Hr for all k. Then for each k, v(dk)

= (0, • • • ,0,art, • • ■ , a") where aTt>0. Since v(dk)>v(dk+1),aTt^:al+i.

Assume that the sequence {aTt} has a minimum, then there exists a

t(l) such that a[(1)+3, = aj(1) for p = l, 2, ■ • • . Consider the infinite

sequence {«^+t} t°-1 - If this sequence has a minimum, there is a

t(2)>t(l) such that cl$=c$lj+p ior p = l, 2, ■ • ■ . Continue this

process, since v(dk)>v(dk+i) for all k, we must eventually find a posi-

tive integer u such that the sequence {aj(t)+*}t°=i does not have a

minimum. Pick a strictly decreasing subsequence from {a£(£"+t}.

Since {a,} is a /3*-sequence, each a^"+t is a positive real number.

Hence it is possible to pick a subsequence {/3y}, from the strictly

decreasing sequence already chosen, satisfying the lemma. Let bj be

* This fact was pointed out to the author by the referee.
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the element of {a,-.} such that v(bf) = (0, ■ ■ • , 0, 7$, • • • , 7j+"~\

Pj< ' ' ' > 7?)- Note that by our construction we have yrj=yTJ+i,

7j+1=7j+i\ • ' • , Tj^-^YjJr1 for all j. Hence »(&,-/&y+i)
= (0, • • • , 0, Bj-Bj+i, ■ ■ ■ , 77-77+1) which implies that v(bj/bjJri)
>v(bi+i/bj+i), for each j. By (5) each bj/bj+iET. Thus {&y/i,-+i}

is a /3-sequence for v in F. To complete the proof proceed exactly as

we did in the proof of Theorem 3, (starting with the second para-

graph of the proof of Theorem 3).

Corollary 3. Assume the same hypothesis as in Theorem 4. If P is

any prime ideal of R containing {fl,-}, then RPC\RW is a 8-domain for v.

Proof. Rp is a /3-domain with /3-sequences {a,}. If infinitely many

ai are in Rw, then Rwr\RP is a /8-domain. Assume there are only

finitely many OiERw, then we choose an infinite subsequence {bj}

of {a,} such that each bj(£.Rw. Let P be a prime ideal of R containing

{at}, and hence {bj}. Then, as in the proof of Theorem 3, bj/(b* + l)

ERp(~}RK for all j and {bj/(b] + l)} is a /3-sequence for v in RPr\Ry,.

We conclude with a remark on regular rings. Auslander and Buchs-

baum, [2], defined a noetherian ring R to be regular in case RP is a

regular local ring for each prime ideal P in R. Generalize this by

defining a ring R, not necessarily noetherian, to be regular in case Rp

is a regular local ring for each prime ideal P in R. Nakano gives, in

[6], an example of a regular non-noetherian ring. We were led to the

study of /3-domains by trying to determine all non-noetherian regular

rings. This we have not been able to do. However, /3-domains do give

some information about non-noetherian regular domains, though

negative in character. In fact any /3-domain is necessarily nonregular.

To see this, suppose that A is a /3-domain for v and that {a,} is a

/3-sequence in R. Let P be a prime ideal of R containing {a,}. Then

RERpERv By (3), RP is a/3-domain and is therefore non-noetherian.

Hence Rp is not a regular local ring.

References

1. S. Abhyankar, Ramification theoretic methods in algebraic geometry, Ann. of

Math. Studies, no. 43, Princeton Univ. Press, Princeton, N. J., 1959. MR 21 #4158.

2. M. Auslander and D. A. Buchsbaum, Homological dimension in local rings,

Trans. Amer. Math. Soc. 85 (1957), 390^05. MR 19, 249.

3. N. Bourbaki, Alglbre commutative, Chapitres 3, 5,6, Actualites Sci. Indust., nos.

1293; 1308, Hermann, Paris, 1961; 1964. MR 30 #2027; MR 33 #2660.

4. W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathe-

matika 15 (1968), 164-170.



666 j. a. huckaba

5. W. Heinzer and J. Ohm, Noetherian and non-noetherian commutative rings.

Notices Amer. Math. Soc. 16 (1969), 264. Abstract #663-606.
6 N. Nakano, Ideallheorie in einem speziellen unendlichen algebraischen Zahlkorper,

J. Sci. Hiroshima Univ. Ser. A. 16 (1953), 425^39. MR 15, 510.
7. O. Zariski and P. Samuel, Commutative algebra. Vol. II, University Series in

Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006.

University of Missouri


