A CLASS OF NON-NOETHERIAN DOMAINS
JAMES A. HUCKABA!

ABSTRACT. A new class of non-noetherian domains, called 8-do-
mains, are characterized in the first part of this paper. The second
part is concerned with deciding when the intersection of a -domain
with a valuation ring is again a g-domain.

1. Introduction. Let %k be a field and » a nondiscrete valuation
defined on k. All rings under consideration will be subdomains of %
and will contain the multiplicative identity of k. Denote the valuation
ring of v by R, and its maximal ideal by M,. A subdomain R of R, is
called a B-domain for v in case R contains a sequence {a;} {2 with the
property that v(a.) >v(az) >v(as) - « - . {ai} is called a (-sequence for
v in R. In §2 of this paper elementary properties of 8-domains and
B-sequences are given, 8-domains are characterized (Theorems 1 and
2), and sufficient conditions are given for a ring to be a -domain
(Proposition 1).

In general, given two subdomains of a field % it is not possible to
determine whether their intersection is a noetherian domain or a
non-noetherian domain. Recently Heinzer and Ohm, [$], have an-
nounced some results concerning the intersection of noetherian rings
and valuation rings. In particular they have shown that if D and R
are domains with the same quotient field &, and Vis a rank one valua-
tion ring of % such that R V and D=RNYV, then:

(i) if V is centered on a finitely generated ideal of D, then V is
noetherian; and

(ii) if V is centered on a maximal ideal of D, then D is noetherian
if and only if R and V are noetherian.

In §3 we prove theorems related to this result. Theorem 3 analyzes
what happens when we consider the intersection of a 3-domain R,
for a rank one valuation v, with an arbitrary valuation ring. Theorem
4 is a version of Theorem 3 when v is assumed to be of rank m > 1.

2. B-domains and (-sequences. 3-domains can be characterized
very easily as follows:
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THEOREM 1. Let R be a subdomain of k. R is a B-domain for some
valuation v if and only if R contains a sequence {a;}i., such that
{@i/ain}io generates a proper idealinthering T = R[a1/az, as/as, - - - ].

Proor. Suppose that R is a 8-domain for v, then R contains a se-
quence {a,-} such that v(a;) >v(a:1) >0 for all 2. Thus {ai/a,u,l}
CM,NT#T, where T=R[ai/as, as/as, - - - ]. Conversely, let P be
a prime ideal in T containing {a:/ai;1}. If (R,, M,) is a valuation
ring in & with center P in T, then 0<v(a:/@:11) =v(a;) —v(ais1) for
eachz. Q.E.D.

We now list, without proof, some elementary properties of B-
domains and the ring 7.

(1) R, is a f-domain for v.

(2) All B-domains are non-noetherian.

(3) Any ring between a 3-domain and R, is also a 8-domain.

(4) Any infinite subsequence of a $-sequence is still a B-sequence.

Let T be the ring which appeared in Theorem 1 and suppose that 4
is the proper ideal of T generated by {a,-/a,ur;}f;l.

(5) Let ¢ be a fixed positive integer. If 1<¢, then a;/a,EA. If i>¢,
then a;/a, & T. For all 7, 1/a,&T.

(6) For each 1, a;y1 properly divides a; in T. Hence, the ideal in T
generated by ay, az, - - -, a; is principal and is in fact generated by a..

ProposiTiON 1. (i) If R is a domain which contains a prime ideal P
such that Rp is a nondiscrete valuation ring, then R is a $-domain.

(ii) If vis a nondiscrete valuation on a field k and if R,=Ry, Ry, - - -,
R, arevaluation rings with quotient field k, then R =N}, R;s a B-domain.

(iii) If F is a field, and <f {X,-}{’;l is a set of indeterminates, then
R=F[Xy, X,, - - - ] is a B-domain.

PrOOF. (i) Choose a fB-sequence {a;} in Rp=R,. Write a;=b./c;
where b;, ¢;ER and ¢; P. Then v(a;) =v(b;) for all 7, which implies
that {b;} is a B-sequence for v in R.

(ii) Let P=M,NR. By [3, Chapter 6, p. 132], we have Rp=R,.
Now apply ().

(iii) The proof of this statement is contained in the following more
general lemma.

First we make the following definition. A finite subset a4, - - -,
a.& R which generates a proper ideal 4 of R is said to be analytically
independent in case the following property holds: If f(Zy, - - -, Z,) isa
form of arbitrary degreein R[Z;, - - -, Z.] such thatf(as, - - - ,@a) =0,
then all the coefficients of f are in the radical of A. An infinite subset
{a;},“:l in R is analytically independent if {a‘} generates a proper
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ideal in R and if each finite subset of a.~} is analytically independent.
Note in particular that the set {X,} in part (iii) of Proposition 1,
is analytically independent.

LeMMA. If R contains an infinite analytically independent set, then
R is a B-domain for an appropriate v.

ProoF. Let {a;} be an analytically independent subset of R and
let T=R[a1/a2, as/as, - - - ] In view of Theorem 1, it is sufficient to
show that the ideal generated by ai/a,, as/as, - - - is a proper ideal
in T. Suppose not, then

1= 3 au0s/a9)5(as/as) 5 - - - (an]anss)™

i=1

where ;&R and ¢;; are nonnegative integers. Let {;=max}., {t,-;}.
Then

T
t t2 tn h—ti th—tni t1§ tni
(*) 0= —0sas - a1+ D s a1 G G

=1

Each term of (*) has degree Z;‘,l t;. Since {a;} is analytically inde-
pendent, —1 is in the radical of 4 where A=(ay, - - -, a,). Hence
A =R, a contradiction. This proves the lemma and also Proposi-
tion 1 (iii).

Many non-noetherian rings contain a sequence {a.-} 7-1 such that
@41 properly divides a; for all 7, (e.g., the ring T of Theorem 1 or any
nondiscrete valuation ring). In the next theorem we characterize
B-domains which have this property.

THEOREM 2. Let R be a domain and let {a;};%, be a sequence in R
with the property that each a;y1 properly divides a;in R. Then c.a;p1=a;
where c;ER. A subsequence of {a;} s a B-sequence in R for an appropri-
ate valuation v if and only if there exists a maximal ideal M of R con-
taining infinitely many c;.

ProoF. Suppose that {c;} contains an infinite subsequence whose
members lie in M, where M is a maximal ideal of R. We define a
subsequence of {a;} inductively. Let b, =a, and assume that b; has
been defined. Then b;=a, for some n. Choose m>n such that
cm1€EM and define bj11=an. Then bj=a,=c¢, -+ - cm-10m
=Cp * * * Cm—1bjy1, which implies that b;/b,.,E M. This is true for
all 7. Hence {b,’} is a B-sequence for any valuation v having center
M on R.
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Conversely, suppose that {b;} is a B-subsequence of {a;}. Then
each b;;1 properly divides b;, and by Theorem 1 {b,-/b,u,,} is a subset
of some maximal ideal M of the ring T =R|[b1/bs, bs/bs, - - - |=R.
Since b;=ar=¢n * * * Cm—18m=Cn * * * Cm—1b;js1 for appropriate m and
n, there is some n<¢t<m —1 such that ¢,& M. This is true for all j,
hence infinitely many members of {c;} are in M. Q.E.D.

The next two corollaries give rings which satisfy Theorem 2.

CoROLLARY 1. Let R be a domain such that each nonzero principal
ideal of R is contained in only finitely many maximal ideals. If R con-
tains a sequence {a,-} such that each a;y1 properly divides a; in R, then
R 1s ¢ B-domain.

ProoF. Let M, - - -, M, be the complete set of maximal ideals con-
taining the principal ideal (¢;) and suppose that c;a;11=a; for all 7,
then {c;} CU.; M;. For suppose not, then there is a ¢,€EUM,. Pick
a maximal ideal M of R containing ¢,. Since ai=cice * - * ¢+rya,
a1€ M. Hence M is one of the M;, a contradiction. Therefore {c;}
CUM; and it follows that infinitely many ¢; are in one of the M.
By Theorem 2, R is a B-domain. Q.E.D.

A nonczero fractional ideal I of the domain R is divisorial in case [
is the intersection of principal fractional ideals.

COROLLARY 2. If R is a domain in which each nonzero ideal is divi-
sorial and if R contains a sequence {a;} 2, such that each a;y1 properly
divides a;, then R is a B-domain.

ProoF. Heinzer has proved, [4, Theorem 2.5], that each ideal of
R is contained in only a finite number of maximal ideals. Apply
Corollary 1. Q.E.D.

3. Intersection theorems.

LEMMA. Let {ai} be a strictly decreasing sequence of positive
real numbers. Then there is a subsequence {B;} of {a:} such that
{ 6j—Bj+1} 2115 a strictly decreasing sequence of positive real numbers.

ProoF.LetBi=aj;andr,=1im;>, a;. Letrd =B1—randry=7ry /2+47,.
Choose a;,<r; and define B, =a;, By induction define 7;=8;_1—n
and r;=r] /2-+r. Choose a;;<r; and define 8; =a;. {B;—Bjs1} is the
required sequence. Q.E.D.

For the concepts concerning value groups and valuation rings which
are used in the proofs of Theorems 3 and 4, we refer the reader to
[1] and [7].

THEOREM 3. Suppose that R is a B-domain for a rank one valuation v
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which is defined on k, the quotient field of R. Let {a;} be a B-sequence
for v in R and let T =R|[ai/a,, as/as, - - - |. If w is a valuation on k
with valuation ring R, then:

(i) If R, is noetherian, then R,NT 1is a B-domain for v;

(ii) If R, is non-noetherian, then R,NT is a B-domain for v or
R,NR, is a B-domain for both v and w with respect to every prime ideal
P of R containing {a:};

(iii) If a1 properly divides a; in R for all © and +of R,NT is a -
domain, then R,MNR is a B-domain.

Proor. If R, contains infinitely many members of the sequence
{a;}, then by (4) R.NR, R,NT, and R,NRp are all f-domains.
So we will assume that R, contains only finitely many elements of
{a:}. Choose an infinite sequence {a:} of {a;} such thateach as& R,
Again by (4), {a;'} is a B-sequence for v in R. Since v is a rank one
valuation, its value group is an ordered additive subgroup of the real
number system. By the lemma, {v(ar)} contains an infinite subse-
quence {v(b,«)} such that {v(b;) —v(b;41)} is a strictly decreasing se-
quaence of positive real numbers. Thus by (5) {bj/ b,~+1} is a B-sequence
forvin T.

Since R, is a valuation ring and since each b;& R,, we have that
b;j~'is a nonunit of R,. Suppose that R,, is a noetherian valuation ring.
Then there is a positive integer 1’ such that 0 <w(by') Sw(b;?) for
all j. Then by}, = (b74./b7")by" and byl /by' =by /by 1 ER,,. Define
c1=by/by41. Let 2’ be a positive integer >1’ such that 0<w(by")
Sw(;') for all j>1'. As above let ¢;="by /by 1ER,. By induction
we construct a sequence {ck} so that ¢y =by /b 11ER,. Now v(cy)
—(ces1) >0 for all &, hence {c.} is a B-sequence for v in R,MNT. This
proves (i).

Now assume that R, is non-noetherian. Consider the previously
constructed sequence {bj} . Suppose there exists no strictly decreasing
infinite subsequences of {'w(b,“)}. Then, as in the noetherian case,
we can show that R,MN7T is a f-domain. On the other hand, suppose
that {b; } is a subsequence of {b,} such that w(by") >w(bz")> - - - .
Let P be any proper prime ideal of R containing {b,-}, (certainly any
prime ideal P of R containing {ai} will also contain {bj}). Clearly
b+ 1€ P for all j/, hence each b;/(by+1)ERp. Also w(bj/(b3+1)]
= —w(b)>0, which shows that each b;/(b?+1)ER,NRp. By
straightforward computation we see that {b;/ (bff+1)} is a f-
sequence for both v and w in R,MNRp. This completes the proof of (ii).
Part (iii) is clear. Q.E.D.

Our next goal is to prove a version of Theorem 3 for valuations v
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of finite rank m, where m > 1. Recall that if G is the value group of v,
then G is order isomorphic to an additive subgroup of ®&™, ® being
the real number system. Order is defined in ®™ as follows: Let
(1, -+, am), B1, -+ -, Bm) ER™, suppose that a;=0; for 1<p and
a,#B,, then (ay, « + -, an) <(B1, * + +, Bm) if and only if a, <B,.

In the situation where v is of rank m > 1, it is necessary to introduce
a stronger condition than that of a B-sequence. Let R be a sub-
domain of R,. A sequence {a,-} of R is called a B*-sequence for v
in R in case (1) {ai} is a B-sequence for » in R, and (2) if v(a;)
= (a1, * -+, &im) then a;;20 for all 7 and j. It is clear thatif v is a
rank one valuation, then the concepts of a 8-sequence for » and a
B*-sequence for v are equivalent. However, this is not the case when v
is of rank m > 1. For suppose that v has rank 2 and {a;} is a sequence
of elements in R with the property that v(a;) = (1, —1) for all <. Then
{a;} is a 8-sequence for v, but not a 8*-sequence for v.2

THEOREM 4. The conclusions of Theorem 3 remain valid when v is
assumed to be a valuation of finite rank m>1 and {a.} is assumed to
be a B*-sequence for v in R.

PROOF. As in the last proof suppose that {a,v} is an infinite subse-
quence of {a.-} such that a. &R, for each 7. From now on assume
that G, the value group of v, is actually a subgroup of &™. If 7 is a
positive integer =m, then H,= {(al, e, am)EGlayy=0p= - - -
=a,=0} is an isolated subgroup of G. All isolated subgroups of G
can be obtained in this way. If Hy, - - -, Hn, are the isolated sub-
groups of G, then G=H>H,> - - - >H,=(0). It is possible to
choose an infinite subsequence {di} of {aw} such that for some
r, v(dy)EH,_; and v(d.)§ H, for all k. Then for each k&, v(d:)
=0, --,0,0f, -+ -,af) where a; >0. Since v(di) >v(dr+1), 0% = 051 1-
Assume that the sequence {a}} has a minimum, then there exists a
t(1) such that ofyy.,=0cfy for p=1, 2, - - .. Consider the infinite
sequence {a{f{)lﬂ}f_l. If this sequence has a minimum, there is a
t(2)>t(1) such that o) =ojgy, for p=1, 2, - - - . Continue this
process, since v(dx) >v(dr41) for all 2, we must eventually find a posi-
tive integer % such that the sequence {djif4+}i-, does not have a
minimum. Pick a strictly decreasing subsequence from {a{(‘,t,';g}.
Since {a.-} is a B*-sequence, each &% is a positive real number.
Hence it is possible to pick a subsequence {B;}, from the strictly
decreasing sequence already chosen, satisfying the lemma. Let b; be

t This fact was pointed out to the author by the referee.
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the element of {a:} such that #(b;)=(0,---, 0,7}, - - -, ;™"
Bi» - -+, 7). Note that by our construction we have v;=7v},,
V=il o, BT =yl for all j. Hence  (bi/bis)
=(0, -+, 0,B;—Bi+1, - -+, ¥ —V¥s+1) which implies that v(b;/b;41)
>v(bj1/bjs2), for each j. By (5) each b;/b;&T. Thus {b;/bju1}
is a B-sequence for v in T. To complete the proof proceed exactly as
we did in the proof of Theorem 3, (starting with the second para-

graph of the proof of Theorem 3).

COROLLARY 3. Assume the same hypothesis as in Theorem 4. If P is
any prime ideal of R containing {a,—} , then RpM\R,, is a B-domain for v.

PRrOOF. Rp is a B-domain with 3-sequences {a;}. If infinitely many
a; are in R,, then R,MNRp is a B-domain. Assume there are only
finitely many ¢;ER,, then we choose an infinite subsequence { b;}
of {a,-} such that each b;& R,,. Let P be a prime ideal of R containing
{a.~} , and hence {b;}. Then, as in the proof of Theorem 3, b;/(b]+1)
E€RpNR, for all j and {b;/(b}+1)} is a B-sequence for v in RpMNR,,.

We conclude with a remark on regular rings. Auslander and Buchs-
baum, [2], defined a noetherian ring R to be regular in case Rp is a
regular local ring for each prime ideal P in R. Generalize this by
defining a ring R, not necessarily noetherian, to be regular in case Rp
is a regular local ring for each prime ideal P in R. Nakano gives, in
[6], an example of a regular non-noetherian ring. We were led to the
study of B-domains by trying to determine all non-noetherian regular
rings. This we have not been able to do. However, 8-domains do give
some information about non-noetherian regular domains, though
negative in character. In fact any 8-domain is necessarily nonregular.
To see this, suppose that R is a 8-domain for v and that {a;} is a
B-sequence in R. Let P be a prime ideal of R containing {a;}. Then
RCRpCR,. By (3), RpisapB-domain and is therefore non-noetherian.
Hence Rp is not a regular local ring.
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