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Abstract. Lehto and Virtanen have extended Lindelof's

theorem for the class of normal meromorphic functions. It is shown

that Lindelof's theorem cannot be extended for the class of bounded

normal light interior functions. A generalization of Lindelof's

theorem is given.

1. Preliminaries. Let D be the unit disk, C the unit circle. Let/ be

a light interior function from D into the Riemann sphere W, i.e. / is

a continuous open map which does not take any continuum into a

single point. It is known that/ has a factorization f = g o h where h

is a homeomorphism of the unit disk onto either the unit disk or the

finite complex plane and g is a nonconstant meromorphic function.

We will be concerned with the case when the range of h is the unit

disk. It is shown that Lindelof's theorem cannot be extended for the

class of bounded normal light interior functions. A generalization of

Lindelof's theorem is given.

A simple continuous curve T: z(t) (0=^<1) contained in D is called

a boundary path if | z(t) \ —■»1 as t—*l. The end of a boundary path T is

the set TC\C. A boundary path T is an asymptotic path of f for the

value c provided/(z(/))—»c as t—>1. The value c is called a point asymp-

totic value of f if there exists an asymptotic path of/ for the value c

whose end consists of a single point.

The cluster set, C(f, 6), of/ at e'e is the set of all points w£ W for

which there exists a sequence \zn\ of points in D with z„—>eie and

f(zn)—>-w. By a Stolz domain A at eie we mean a set of the form

{zED: - w/2 < 0i < arg (1 - z/ea) <<pz< x/2},

and by a terminal Stolz domain at eie we mean a set of the form

At~\ {z:  | z- eif>\ < «} (0 < e < 1).

The function / is said to have the Fatou value c at e"9 if f(z)-+c as

z—>e*9 from within each Stolz domain A at eie.
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The function / is normal if it is uniformly continuous with respect

to the non-Euclidean hyperbolic metric p in D and the chordal metric

in W [l]. Let h be a homeomorphism of D onto D. If h is uniformly

continuous with respect to the non-Euclidean hyperbolic metric in

both its domain and range then we say that h is HUC. Since the com-

position of two uniformly continuous functions is uniformly continu-

ous the following theorem is immediate [4].

Theorem A. Let h be a homeomorphism of D onto D which is HUC.

// g is a nonconstant normal meromorphic function, then the light

interior function f' = g oh is normal.

2. The main results. Lindelof's theorem states that if a bounded

holomorphic function possesses the point asymptotic value c at eie,

then it possesses the Fatou value c at e'0. The following result shows

that a bounded normal light interior function can possess point

asymptotic values at almost every point of C and possess no Fatou

values.

Theorem 1. There exists a bounded normal light interior function

which possesses point asymptotic values at almost every point of C, but

which possesses no Fatou values.

The following lemma is used in the proof of the theorem.

Lemma 1. There exists a homeomorphism h of D onto D with the

following properties:

(a) the radius t0 at z = 1 is mapped onto an arc T0, where T0 is a

Jordan arc lying in D\J {1} internally tangent to C at z = 1, and having

the origin as the other end point,

(b) if Ye denotes the image of To under a rotation through an angle 6

about the origin, then the radius r« at eie is mapped onto T$,

(c) the restriction of h to C is the identity function, and

(d) h is HUC in D.

Proof. Let {Rn\ be a strictly increasing sequence of nonnegative

real numbers with RB = 0 and p(R„, Rn+i) = 1/(1 — R„). Let $(r) be a

mapping of the interval [0, 1) onto itself defined by ^(r) = (ri?2)/i?3

for 0^r<R3 and satisfying the equation p(Rn-i, $(r))/p(Rn-i, Rn)

=p(Rn, r)/p(Rn, Rn+1) for Rn^r<Rn+1 (n = 3, 4, • • • ). A straight-

forward calculation shows that if

r ^ r'    then    p(<E>(r), $(>•')) S p(r, r').

Let C*={z: Im z>0, \z —1|=|} and C„= {z: |z\ =Rn]. Let

C*r\Cn = wn and let an = arg(wn) (« = 1, 2, • • • ), and let a0 = 0. Then
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{an} is a sequence of positive real numbers with a„—>0. Define a

function ¥(r) on [0, 1) by ¥(r) =ir/2+ [a1-ir/2}p(Q, r)/p(0, R3) for

0^r<7?3 and satisfying the equation

¥(r) = «»-2 + k-i - a*-2]p(7?n, r)/p(Rn, Rn+1)

for Rn^r<Rn+i (n = 3, 4, • ■ ■ ).

Let the mapping /z in 7? be defined by

A(z) = h(rea) = $(r) exp (id + i¥(r))

for Og?-<l and set h(ew) =eie. It is easy to verify that h is a homeo-

morphism of D onto Z) and that the radius t0 is mapped onto a

Jordan arc To which is internally tangent to C at the point z = 1.

Set An= [z: RntH \z\ <7?n+i}. Let w^2 be fixed but arbitrary and

let z, z'EAn with p(z, z')<l- It suffices to show that we can find a

constant K, independent of n, for which p(h(z), h(z')) ^Kp(z, z'). The

case when z(E.An and z'QAn can then easily be disposed of by intro-

ducing an appropriate number of intermediate points on the geo-

desic between z and z' and lying on the circles C,-, and adding the

inequalities thus obtained. We may assume that z = reia and z'

= r'e& with r^r'. Then we have the following inequality

p(h(z), h(z')) g p($(r) exp (ia + i$(r)), *(r) exp (i/3 + i¥(r)))

+ p($(r) exp (i/3 + M(r)), $(r) exp (i/3 + i*(r')))

+ p($(r) exp (i/3 + W{r')), $(/) exp (i/3 + i*(r'))).

From the fact that <£(r) ^r we obtain

p($(r) exp (ia + **■(/)), $(r)exp (i/3 + i^M))

= p(*(r)eia, $(r)eif>) ^ p(reia, re«'") ^ p(z, z').

From the facts that $(r)g7?„, p(7?„, 7?n+1) = 1/(1 -Rn) and

[an_i —a„_2| <w/2 we obtain

p($(r) exp (i/3 + i*W), *M exP (*£ + **(/')))

I  /•*<''>      $(r)d0

:|J*(o     1 - [*(0]2

^ ir[P(Rn,r') - p(Rn,r)]/2[(l - Rl)p(Rn,Rn+1)]

^7rp(r,r')/2girp(z,z')/2.

From the fact that p($(r), <£(/•')) ̂ P^, r') we obtain

p($(r) exp (i/3 + M(r')), $(/) exp (i/3 + i*(/)))

= p(*(r),*(f'))gp(f,r0^p(*,«').
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Combining the above estimates we choose K = 2-\-ir/2 and the

proof of the lemma is complete.

Proof of Theorem 1. Let h be the homeomorphism and To be

the Jordan arc of Lemma 1. By a theorem of Lohwater and Piranian

[3, Theorem 9, p. 15], there exists a bounded holomorphic func-

tion g which does not approach a limit as z approaches eie along T9

(0^6<2tt). Hence the bounded light interior function f = g o h pos-

sesses no radial limits. By Theorem A, / is normal.

Since g is bounded, g possesses radial limits at almost every point

of C. Let Te be the radius terminating at eie. It follows easily that/

has point asymptotic values at almost every point of C along the

paths h~l(T)); and the theorem is proved.

Let h be a homeomorphism of D onto D. If for every e^GC and

every Stolz domain A at eie the image of some terminal Stolz domain

of A is contained in a Stolz domain, then we say that h weakly pre-

serves Stolz domains.

Theorem 2. Let f be a light interior function with factorization

f = g oh where both h and h~l weakly preserve Stolz domains and g is a

nonconstant normal meromorphic function. If f has the point asymptotic

value c at eie, thenf has the Fatou value c at eie.

Before we prove the theorem we establish the following lemma.

Lemma 2. If h is a homeomorphism of D onto D for which both h and

h~* weakly preserve Stolz domains, then h can be extended to a homeo-

morphism of D onto D.

Proof. Suppose h cannot be extended to be continuous in D. Then

there exists a point e16 for which C(h,9) = [</>i, <p2], with O<02—<pi^27r.

There exist two radii T\ and t2 terminating at eia and e'*3, respectively,

with c/>i<a<(3<c/>2 for which hrl(reia)-+em and h~1(reiff)-^eie. Since h

weakly preserves Stolz domains, h has exactly one nontangential

asymptotic value at eie, and hence one of &_1(ti) and h~l(T2) must be

a tangential asymptotic path. But then h~x does not weakly preserve

Stolz domains which contradicts our hypothesis. Therefore h can be

extended to be continuous in D and similarly hrl can be extended to

be continuous in D. It follows easily that h can be extended to a

homeomorphism of D onto D and the lemma is proved.

Proof of Theorem 2. From Lemma 2, h can be extended to a

homeomorphism of D onto D. Let/ have the point asymptotic value

c along an asymptotic path V terminating at eie. Then h(T) is an

asymptotic path terminating at h(eie) along which g has the asymp-
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to tic value c. By a theorem of Lehto and Virtanen [2, Theorem 2,

p. 53], g has the Fatou value c at h(eie). Since h weakly preserves

Stolz domains it follows easily that/ has the Fatou value c at e'6 and

the proof is complete.

Theorem 1 shows that the hypothesis that h is merely a homeo-

morphism of D onto D is not sufficient to imply the conclusion of

Theorem 2. However, by a theorem of Mori [5, Theorem 6, p. 69], if

h is a 7f-quasiconformal homeomorphism of D onto D, then both h

and hrY weakly preserve Stolz domains. Thus we obtain the following

result which was first proved by Vaisala [6, Theorem 8, p. 22].

Corollary. Let f be a light interior function in D with factorization

f = goh with h a K-quasiconformal homeomorphism of D onto D and

g a nonconstant normal meromorphic function. If f has the point asymp-

totic value c at eie, then f has the Fatou value c at ei$.
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