
A PROPERTY OF THE RAYLEIGH FUNCTION

F. T. HOWARD

1. Introduction. Let Jr(z) denote the Bessel function of the first

kind. Kishore [3], [4], has defined the Rayleigh function of order 2n

by means of

**.(") = £ (>.m)-2n       (• - 1, 2, • • •)

where the j,,m are the zeros of z~'J,iz), \R(j,,m)\ =§ |-R(j».m+i)|. The

Rayleigh function is a rational function of v and the following recur-

rence formula has been developed for it [3]:

n—1

(1.1) (V + n)c2n(v)   =   X Olk(v)o-2n-2k(v).
t=l

It would be of some interest to know exactly which primes divide

the numerator or denominator of atn(v), if v is rational and a^Jy) is

reduced to its lowest terms. Restricting ourselves to the prime 2, and

using induction on (1.1), we shall find in this paper the exact power

of 2 dividing a2niy) when v is a rational number a/b, a odd and b even.

This will extend the results of [2 ] where the same problem was solved

for v one half an odd integer. In this paper we shall also prove some

congruences (mod 2), (mod 4), and (mod 8). We note that this type

of problem has been considered for other sequences of rational num-

bers. For the well-known Bernoulli numbers B2n, for example, it has

been proved [l] that

2B2n = 1 (mod4)(» > 1),

= 1 + 4w(mod8)(w > 1),

= 1 + 4«(modl6)(w > 2).

Throughout this paper we shall assume a is an odd integer, b is an

even integer, b = (2k +1)2(, t>0, and a/b has been reduced to its

lowest terms.

2. The power of 2 dividing the Rayleigh function.

Definition 2.1. Define 62n(v) as the exponent of the highest power

of 2 dividing the denominator of o-in(v). If d2n(v) is negative, it is under-
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stood that —diniv) is the exponent of the highest power of 2 dividing

the numerator of ainiv)-

Since we shall be proving our main results by using induction on

(1.1), it is useful to list here the first three values of (r2n(a/&).

<r2(a/b) = b/^ia + b),

aia/b) = b*/2\a + 6)2(a + 2b),

oiia/b) = 66/26(a + £>)3(a + 26)(a + 3b).

Theorem 2.1. Suppose a is odd, & = (2/fe+l)2', />0, and

In = 2" + • • • + 2*»,       si> ■ ■ ■ > sm> 0.

Then

dinia/b) = 2m + 1 + (1 - 2n)t - m.

Proof. The theorem is true for n = l, 2, 3. Assume it is true for

1, • • • , n — 1. Let x = 2w-fT + (l —2n)t — m. From (1.1) we have

[n/2]

(2.1) 2*ia + bn)o-2nia/b) = 2*6   J^ ako-2kia/b)ain-ikia/b)
k-l

where ak = \ if n — 2k, ak = 2 if n¥^2k. Suppose m>\. For a fixed k

write 2& = 2ri+ • ■ ■ +2'" and 2m-2£ = 2«i+ • • • +2"«. By our in-

duction hypothesis, the exponent of the highest power of 2 dividing

the numerator of 2xbakO-ikia/b)o-in-ikia/b) is u+w — m (or m — 1 if

n = 2k). Hence all terms on the right side of (2.1) are congruent to

0 (mod 2) except those for which

2k = 2ri + • • ■ + 2r» 2n - 2k = 2<*i + • • • + 2"",
(2.2)

u -\- w = m.

There are Cm,\ such terms with u = \,w = m — 1; Cm,2 terms with m = 2,

w = m —2; etc. It is easily seen there is a total of 2m~l — 1 terms satis-

fying conditions (2.2). Hence there are an odd number of terms on

the right side of (2.1) congruent to 1 (mod 2). Thus we have

2Io-2„(fl/6) = 1 (mod 2).

If m = \, we need only consider the term on the right of (2.1) such

that 2n — 2k = 2k = n and the theorem follows.

3. Congruences (mod 4) and (mod 8). If 2« = 2U, u>\, it is easy

to raise the modulus in Theorem 2.1 to 4 and to 8. Again we assume

that b = i2k + l)2>, t>0.
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Theorem 3.1. // 2« = 2", we have

2°*"<°i»o-2n(a/b) =   ilk + l)/a (mod 4)        (« > 1),

= Silk + I)/a (mod 8)        (« > 2).

Proof. To prove the congruence (mod 8), we use Theorem 2.1 and

formula (2.1). Note that n = 2u~\ n/1 =!»-*, 3ra/2 = 2"-1 + 2»-2. We

have

2^°'»o-2nia/b) = (——\ (2«»(<"6Vn(a/6))2

+ 4(2»"»»<»'»Vln/,(a/J) ■2»»«<0'»ff|,/1(a/&))

as 5(2* + l)/a (mod 8).

The next two theorems follow in much the same way from Theorem

2.1 and formula (2.1).

Theorem 3.2. // 2n = 2"+2v, then

2»*.(a/!»0.2B(o/£) =   (2k + l)/a (mod 4)        (« = v + 1, v k 1),

= 3(2* + l)/o (mod 4)        (« - v > 1, » ^ 1).

Theorem 3.3. // 2n = 2"+2»+2u'> then

2»«.<«/»V2B(a/J)

=   (2* + l)/a (mod 4)        (m = w + 2, » = w + 1, w ^ 1),

=   ilk + l)/a (mod 4)        (w - » > 1, » - w > 1, w ^ 1),

■ 3(2* + l)/a (mod 4)        (« > 3, » = 2, w = 1),

= 3(2* + l)/a (mod 4)        (« — o = 1, v — w > 1, w ^ 1).

In order to find more general congruences (mod 4) we need the

following definition.

Definition 3.1. Let 2» = 2«i+ • • • + 2'», $i> • • • >sm>0. Define

^(2m) as the number of positive integers 2*, 2*^w, such that

2* = 2ri + • • ■ + 2",       n >    • • > r„ > 0,

2» - 2k = 2" + • • • + lq",       qi> ■••>?•> 0,

« -f- w = f» + 1.

The following lemma is important in the proofs of Theorems

3.4-3.7.

Lemma 3.1. Let ln = l"i+ • • • +2'<», si> ■ ■ ■ >sm>0. Suppose in

this expansion there are hi "single" terms 2*» such that
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Si-i — 1 > Si > Si+i + 1,

hi "doubles" 2'*, 2*<+i such that

Si-i — 1 > Si = si+i + 1 > si+2 + 2,

«3 "triples," etc. Then
m

*(2h) = 2—2 £ hi       ifsm>\,

= 2—M  £ii,- l\       ifsm=l.

We shall continue to use the terms "single," "double," and "triple"

in the sense of Lemma 3.1.

Theorem 3.4. Let 2w = 2*i + • • ■ +2S-, si> ■ ■ ■ >sm^l. If each

term of this expansion is "single" in the sense of Lemma 3.1 (s< — s,-+i > 1

for i=l, ■ ■ ■, m — 1), then

2<>^°i»o-inia/b) m i-\)m+\2k + l)/a (mod 4).

Proof. The proof is by induction on m. The theorem is true for

w = l, 2, 3. Assume it is true for 1, 2, • • ■ , m — 1, and let 2w = 2*i

_|- . . . -f-2«». By Lemma 3.1, we know ^(2«) = 0 (mod 2). Hence in

formula (2.1) we need only consider terms on the right side satisfying

(2.2). There are 2m_1 — 1 such terms. Let g(2w) be the number of these

terms congruent to —1 (mod 4). Then, if sm>l,

{2k + 1) r
(3.1)     V-wVauio/b) =- [2—» - 1 - 2g(2n)] (mod 4).

a

If m is even, then, by our induction hypothesis, g(2w) =0. If m is odd,

then g(2w) =2m_1 —1, and the theorem follows for sm>l. H sm=l the

proof is the same, except that in formula (3.1) (2& + l)/a must be

replaced by (2^ + l)/(o + 2(), and it must be remembered that

2W°iva-iia/b) = i2k + l)/ia + 2t) (mod 4).

The proofs of Theorems 3.5-3.7 are similar.

Theorem 3.5. Let 2n = 2s>+ ■ ■ • +2*™, *i> • • • >s*.^l. Suppose

in this expansion there are m — 2 "singles" and one "double." Then

2«2»(o/6)<r2n(a/j) = (_i)»(2jfe + l)/a (mod 4).

Theorem 3.6. Let 2w = 2"i-f • ■ • -f-2*»,si> • ■ • >sm^l.Ifinthis
expansion there are one "triple" andm — 3 "singles," then

2e^<"»a2n(a/b) m i-\)m+\2k + l)/o (mod 4).
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Theorem 3.7. Letln = 2*i+ ■ • • +2'm,si> • • • >sm^l. If in this

expansion there are h "doubles" {h pairs satisfying the definition in

Lemma 3.1), and m — 2h "singles," then

2»**<°/»V2n(a/&) = (-l)"+-+i(2* + l)/o (mod 4).

4. A conjecture. The results of Theorems 3.4-3.7 lead us to the

following conjecture.

Conjecture. Let 2w = 2<,i+ • • ■ +2*», si> ■ • • >sm^l. If in

this expansion there are hi "singles," h2 "doubles," h% "triples," etc.,

then letting £" hi = h, we have

2«>»(«/6V2n(0/&) = (_i)M-i(2* + l)/o (mod 4).
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