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Abstract. An example is given of a nonnormal seminormal

operator on a Hilbert space whose spectrum is thin (in the sense of

von Neumann) and is therefore not a spectral set. It is shown that

every nonnormal subnormal operator is the limit of a sequence of

hyponormal and nonsubnormal operators.

1. Introduction. An operator T on a Hilbert space 3C is said to be

semi-normal in case its selfadjoint selfcommutator T*T—TT* = D is

positive semidefinite (D^O) or negative semidefinite (D^O). In the

case D i= 0 the operator T is called hyponormal. An interesting sub-

class of the hyponormal operators is the class of subnormals: an

operator T on 3C is said to be subnormal in case T is the restriction of

a normal operator A acting on a superspace 91D3C.

It is known that the spectrum of a subnormal operator is a spectral

set (see, e.g., Lebow [5]). Moreover, Bishop [2] has characterized

the subnormal operators as precisely the closure, in the strong oper-

ator topology, of the normal operators (see also Stampfli [lO]).

In this note an example is given of a seminormal operator whose

spectrum is not a spectral set (§3). This example motivates a con-

struction which shows that every nonnormal subnormal operator is a

strong limit of a sequence of hyponormal and nonsubnormal op-

erators (§4).

2. Preliminaries. If A is a compact set in the plane, then C(X)

will denote the algebra of all complex continuous functions on X with

norm defined by ||/||x =sup{ |/(z)| :zEX} for/in C(X). The symbols

R(X) and P(X) will be used to denote, respectively, the set of restric-

tions to X of the rational functions without poles in X and the poly-

nomial functions. The closures of R(X) and P(X) in C(X) will be

denoted by CI (A (A)) and Cl(P(X)).
The spectrum of an operator T is denoted by cr(T). If A is a set in

the plane, prx(A) and pr„(X) will be used to denote the projections

of X on the x and y-axes. The notations measi and meas2 will be em-

ployed for linear and planar Lebesgue measure, respectively.
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A compact set X in the plane is called a spectral set for an operator

Fin case ||/(F)|| g||/||* for all fER(X).
The following theorem of von Neumann [7, p. 279, Satz 6.5] is also

proved in Lebow [5 ]:

Theorem vN. If Cl(R(X)) = C(X) and X is a spectral set for the

operator T, then T is normal.

The following approximation theorem is due to Lavrentieff [4]

(cf. Wermer [ll, p. 74, Theorem 7.3] and Rudin [9, p. 386]):

Theorem L. If X is a compact set in the plane having no interior

and such that the complement of X is connected, then Cl(P(X)) = C(X).

The next two theorems appear in Putnam [8, p. 46 and p. 54]:

Theorem PI. If T = H+iJ is the Cartesian decomposition of the

seminormal operator T, then orx(o(T)) =a(H) and ory(cr(T)) =<j(J).

Theorem P2. If T = H+iJ is seminormal and a(H) contains no

interval, then \\T*T— TT*\\ ^(1/ir) meas2 a(T).

An operator T is called normaloid if sup{|X| :X£o-(J')} =||F||.

Berberian [l] has given the following characterization of operators

whose spectrum is a spectral set:

Theorem B. The spectrum a(T) is a spectral set for the operator T if

and only if f(T) is normaloid for every fER(a(T)).

Finally, if H is selfadjoint, with spectral resolution H = f\dE\,

then H is said to be absolutely continuous in case ||£xx||2 is an abso-

lutely continuous function of X, for each xEH.

3. The example. Kato [3] has given examples of seminormal

operators whose real parts have spectra that are Cantor sets of posi-

tive measure. The following example is of the type studied by Kato.

Let K be a bounded real Cantor set of positive measure; such a set

K is perfect in measure, that is, every neighborhood of a point in K

intersects AT in a set of positive measure. For fEL2(K) (with respect

to Lebesgue measure), define the operator

77(5) = sf(s) + (IA) f f(t)(s - t)-W       (sEK).
J K

If the singular integral is interpreted as a Cauchy principal value,

then the operator T is bounded (see, e.g., Mushelisvili [6]). Moreover,

(T*T-TT*)f=(2/ir)(f, 1k)1k, where 1K denotes the characteristic
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function of A, so that T is hyponormal and nonnormal. Clearly

\\T*T-TT*\\=(2/tt) measi A.

The selfadjoint operators H and /, defined by Hf(s)=sf(s) and

Jf(s) = (l/wi)fKf(t)(s-t)-1dt for s£A and /£A2(A), are the real

and imaginary parts of T, respectively. It is known that o-(77) = A,

and that a(J)= [—1, l] (see, e.g., Putnam [8, p. 140]); it follows

from Theorem PI that o-(F)CAX[ —1, l], therefore meas2 <r(F)

^2 measi A. On the other hand, since || T*T— TT*\\ = (2/ir) measi A,

Theorem P2 yields 2 measi A=:meas2 cr(T). Thus meas2 <r(T)

= 2 measi A = meas2(AX [ —1, l])- Since K is perfect in measure one

easily concludes that a(T) = AX [— 1, l].

Then o~(T) is a compact set in the plane without interior and

with connected complement, hence by Theorem L C\(P(a(T)))

= Cl(A(<r(F))) = C(cr(T)). It follows that cr(T) is not a spectral set for

T (if it were, Theorem vN would imply T normal). The operator T

cannot be subnormal since the spectrum of a subnormal operator is a

spectral set [5, p. 82].

From Theorem B and a lemma of Lebow [5, p. 66] an additional

interesting property of our example T can be concluded: for some

polynomial p the operator p(T) is nonnormaloid.

4. The construction. Let T = H+iJ be hyponormal and non-

normal, so that (Dxq, Xo) > 0 for some x0 in 3C. Assume 77 is absolutely

continuous with spectral measure E(B) for j3 a Borel set.

Choose an increasing sequence {j3„} of perfect nowhere dense sets

in o-(77) such that measi(j3„)—»measi(cr(77)). Then since H is abso-

lutely continuous, E(8n)x—*x for all x in 3C. From the identity

7? = 2*'[77.7-777] it easily follows that the operators T0 = E(B)TE(8)

are hyponormal on 3C. Moreover, lim T$nx = Tx for all x. Further for n

sufficiently large (E(Bn)DE(Bn)x0, xi) must be positive. Since T*nTpn

— TBnTpu = E(8„)DE(8n), then for large n, Tgn will be hyponor-

mal and nonnormal. It follows from Theorem PI that <r(T$ )C

j8„X[-l,l]W{0}.

As in §3 it is possible to conclude, when n is large, that o(T$n) is

not a spectral set for T$n and hence Tpn is hyponormal and non-

subnormal.

The requirement that 77 be absolutely continuous can be removed

in virtue of the following result of Putnam [8, p. 42]:

Theorem P3. Let T = H+iJ be hyponormal. Let 9TC = 9TCr denote the

smallest subspace of H which is invariant under T and T* and contains

the range of D = T*T— TT*. Then 9TC reduces T and if V=H'+iJ' is
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the restriction of T to'SK then H' is absolutely continuous. Moreover, T on

the orthogonal complement of 'Mis a normal operator.

From the above construction and Theorem P3 there follows:

Theorem C. Let T be subnormal and nonnormal. Then T is the

strong limit of a sequence of hyponormal and nonsubnormal operators.
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