OPERATOR-VALUED FEYNMAN INTEGRALS OF CERTAIN FINITE-DIMENSIONAL FUNCTIONALS

G. W. JOHNSON AND D. L. SKOUG

ABSTRACT. Let $C_0[a, b]$ denote the space of continuous functions x on [a, b] such that x(a) = 0. Let $F(x) = f_1(x(t_1)) \cdots f_n(x(t_n))$ where $a = t_0 < t_1 < \cdots < t_n = b$. Recently, Cameron and Storvick defined an operator-valued "Feynman Integral." In their setting, we give a strong existence theorem as well as an explicit formula for the "Feynman Integral" of functionals F as above under weak restrictions on the f_j 's. We also give necessary and sufficient conditions for the operator to be invertible and an explicit formula for the inverse.

1. Introduction and notation. Let $\mathfrak{L}(L_2)$ be the space of bounded linear operators on $L_2 = L_2(-\infty, \infty)$. Let B[a, b] be the space of functions on [a, b] which are continuous except for a finite number of finite jump discontinuities.

We need the following definitions of Cameron and Storvick [2]. (The definitions are not intended to imply the existence of the operators involved. In fact the main theorems of [2] give various conditions on F insuring the existence of these operators.) Let $\psi \in L_2$, $\xi \in (-\infty, \infty)$, and F a functional on B[a, b]. For $\lambda > 0$, $I_{\lambda}(F)$ is the operator on L_2 defined by the Wiener integral

(1)
$$(I_{\lambda}(F)\psi)(\xi) = \int_{C_0[a,b]} F(\lambda^{-1/2}x + \xi)\psi(\lambda^{-1/2}x(b) + \xi)dx.$$

For Re $\lambda > 0$, $I_{\lambda}^{\rm sn}(F)$ is defined to be the operator-valued function of λ which agrees with $I_{\lambda}(F)$ for $\lambda > 0$ and is analytic throughout Re $\lambda > 0$. For Re $\lambda > 0$ and any partition $\sigma: a = s_0 < s_1 < \cdots < s_n = b$ the operator $I_{\lambda}^{\sigma}(F)$ is defined by the formula

$$(I_{\lambda}^{\sigma}(F)\psi)(\xi) = \lambda^{n/2} [(2\pi)^{n}(s_{1} - a) \cdot \cdot \cdot (s_{n} - s_{n-1})]^{-1/2} \int_{-\infty}^{\infty} \cdot (n)$$

$$(2) \cdot \int_{-\infty}^{\infty} \psi(v_{n}) \cdot f_{\sigma}(\xi, v_{1}, \cdots, v_{n}) \exp\left(-\sum_{j=1}^{n} \frac{\lambda(v_{j} - v_{j-1})}{2(s_{j} - s_{j-1})}\right) dv_{1} \cdot \cdot \cdot dv_{n}$$

Received by the editors June 24, 1969.

AMS Subject Classifications. Primary 2825, 4690.

Key Words and Phrases. Feynman integral, Wiener integral, convolution operator, Fourier transform, operator valued Feynman integral.

where
$$v_0 = \xi$$
, $f_{\sigma}(v_0, v_1, \dots, v_n) = F[z(\sigma, v_0, v_1, \dots, v_n, \cdot)]$ and $z(\sigma, v_0, v_1, \dots, v_n, s) = v_j$ if $s_j \leq s < s_{j+1}, j = 0, 1, \dots, n-1$ $= v_n$ if $s = b$.

(If n is odd we always choose $\lambda^{1/2}$ with nonnegative real part.) For Re $\lambda > 0$, the operator $I_{\lambda}^{\text{seq}}(F)$ is defined by

$$I_{\lambda}^{\text{seq}}(F) = w \lim_{n \in \mathbb{R}^{d} \to 0} I_{\lambda}^{\sigma}(F)$$

where w lim means the limit with respect to the weak operator topology on $\mathfrak{L}(L_2)$. In case both $I_{\lambda}^{\rm an}(F)$ and $I_{\lambda}^{\rm seq}(F)$ exist and agree we will denote their common value by $I_{\lambda}(F)$. Finally for $\lambda = -iq, q \in (-\infty, \infty)$, $q \neq 0$, the operators $J_q^{\rm an}(F)$ and $J_q^{\rm seq}(F)$ are defined by

$$J_q^{\text{an}}(F) = w \lim_{p \to 0^+} I_{p-iq}^{\text{an}}(F)$$
 and $J_q^{\text{seq}}(F) = w \lim_{p \to 0^+} I_{p-iq}^{\text{seq}}(F)$.

Again if both exist and agree we denote their common value by $J_q(F)$.

Throughout the rest of this paper we assume that F has the special form given in the abstract, where each f_j is measurable and satisfies $||f_j||_{\infty} < \infty$. This restriction on the f_j 's is much weaker than in [1, pp. 333-348] and [5, pp. 177-185] where Cameron's earlier definition of the Feynman and related integrals was employed to study functionals of the same type.

The main theorem below does more than establish the existence of $J_q(F)$ and give a formula for it. First, it shows that $J_q(F)$ is the strong operator limit of $I_{\lambda}(F)$ rather than just the weak operator limit; secondly, the approach of λ to -iq is restricted only to the open right half plane and not to the line p-iq. We mention also that the existence of $J_q(F)$ is established for every $q \neq 0$. In [2], where more complicated functionals F are dealt with, the theorems give existence of $J_q(F)$ for almost every q, but for specific q, one cannot tell whether $J_q(F)$ exists or not.

We will see below that $I_{\lambda}(F)$ and $J_{q}(F)$ are compositions of multiplication and convolution operators. In the lemma we study the appropriate convolution operators. We also use the following notation:

$$\int_{-\infty}^{\infty} f(u, y) du \equiv \text{l.i.m.} \int_{-A}^{A} f(u, y) du$$

which means

$$\lim_{A\to\infty} \int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} f(u,y) du - \int_{-A}^{A} f(u,y) du \right|^{2} dy = 0.$$

2. Lemma. (a) Let

$$(U_q \psi)(y) = (-iq/2\pi)^{1/2} \int_{-\infty}^{\infty} \exp\left(\frac{qi(y-x)^2}{2}\right) \psi(x)dx$$

for $\psi \in L_2$, $y \in (-\infty, \infty)$ and real $q \neq 0$. U_q is a unitary operator on L_2 and $U_q^{\#} = U_q^{-1} = U_{-q}$ where $U_q^{\#}$ denotes the adjoint of U_q .

(b) Let

$$(C_{\lambda}\psi)(y) = (\lambda/2\pi)^{1/2} \int_{-\infty}^{\infty} \exp\left(\frac{-\lambda(y-x)^2}{2}\right) \psi(x) dx$$

for $\psi \in L_2$, $y \in (-\infty, \infty)$ and $\text{Re } \lambda > 0$. C_{λ} is in $\mathfrak{L}(L_2)$, it is one-to-one, its range is contained in the set of equivalence classes of L_2 which contain a continuous function, and $||C_{\lambda}|| = 1$.

PROOF. (a) The fact that U_q is an isometry in $\mathfrak{L}(L_2)$ is shown in Lemma 1 of [2], hence to show U_q unitary, we only need to show that it is onto. Now

$$(U_q \psi)(y) = (-iq/2\pi)^{1/2} \exp(iqy^2/2) \, \Re[\exp(iqx^2/2)\psi(x)](qy)$$

where \mathfrak{F} denotes the L_2 -Fourier transform. Thus to show U_q onto it suffices to show that, given an L_2 function $\phi(y)$, there exists an L_2 function ψ such that

$$\mathfrak{F}[\exp(iqx^2/2)\psi(x)](qy) = (2\pi/-iq)^{1/2}\exp(-iqy^2/2)\phi(y).$$

This follows since the maps $\psi(x) \rightarrow \exp(iqx^2/2)\psi(x)$ and \mathfrak{F} are both onto L_2 and the q appearing in the argument just brings about a change of scale.

Since $U^{-1} = U^{\sharp}$ holds for any unitary operator, we need simply show $U_q^{\sharp} = U_{-q}$. Now the space C_K of continuous functions on $(-\infty, \infty)$ with compact support is dense in L_2 and so to show $U_q^{\sharp} = U_{-q}$ it suffices to show $(U_q \psi, \phi) = (\psi, U_{-q} \phi)$ for $\psi, \phi \in C_K$. This follows from the Fubini Theorem since the integrand in each case is dominated by the integrable function $|q|^{1/2} |\psi(x)| |\phi(y)|$.

(b) C_{λ} is one-to-one for $(C_{\lambda}\psi)(y)=0$ a.e. implies $\psi(x)=0$ a.e. since the Fourier transform of a convolution is the product of the Fourier transforms and the Fourier transform of $\exp{(-\lambda x^2/2)}$ never vanishes. For any $\psi \in L_2$, $(C_{\lambda}\psi)(y)$ is continuous since the convolution of L_2 functions is continuous.

In Lemma 1 of [2], Cameron and Storvick show that $||C_{\lambda}|| \le 1$. Using a comment in [3, p. 1045] one can show quite easily that $||C_{\lambda}|| = 1$. However, the following elementary proof seems more in-

structive. Let $\frac{1}{2} < r < k < 1$ be given. It suffices to find $\psi \in L_2$ such that $\|\psi\| = 1$ and $\|C_{\lambda}\psi\| > r$. Let $\sigma^2 = 2|\lambda|^{-2}\text{Re }\lambda$. Now choose integers m and n such that $(2\pi\sigma^2)^{-1/2}\int_{-m\sigma}^{m\sigma} \exp(-x^2/2\sigma^2)dx > k$ and $(n-m\sigma)k/n > r$. Let $\psi(x) = (2n)^{-1/2}\chi_{(-n,n)}(x)$. Then $\|\psi\| = 1$, and by use of the formula

$$\int_{-\infty}^{\infty} \exp\left(\frac{-\lambda(x-\xi)^2}{2} \frac{-\bar{\lambda}(u-\xi)^2}{2}\right) d\xi$$

$$= (\pi/\operatorname{Re} \lambda)^{1/2} \exp\left(\frac{-|\lambda|^2(x-y)^2}{4\operatorname{Re} \lambda}\right).$$

We obtain

$$||C_{\lambda}\psi||^{2} = (2\pi\sigma^{2})^{-1/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(u)\psi(x) \exp\left(\frac{-(x-u)^{2}}{2\sigma^{2}}\right) dx du$$

$$\geq (2\pi\sigma^{2})^{-1/2}(2n)^{-1} \int_{-n}^{n} \int_{u-n}^{u+n} \exp\left(-s^{2}/2\sigma^{2}\right) ds du$$

$$\geq (2n)^{-1} \int_{-n+m\sigma}^{n-m\sigma} \int_{u-n}^{u+n} (2\pi\sigma^{2})^{-1/2} \exp\left(-s^{2}/2\sigma^{2}\right) ds du$$

$$\geq (2n)^{-1} \int_{-n+m\sigma}^{n-m\sigma} \int_{-m\sigma}^{m\sigma} (2\pi\sigma^{2})^{-1/2} \exp\left(-s^{2}/2\sigma^{2}\right) ds du$$

$$\geq (2n-2m\sigma)k/2n > r > r^{2}.$$

The following proposition establishes the existence of the operator $I_{\lambda}(F)$ for the class of F's we are considering.

PROPOSITION. $I_{\lambda}(F)$ exists for all λ such that Re $\lambda > 0$ and is given by

(3)
$$(I_{\lambda}(F)\psi)(\xi) = \lambda^{n/2} [(2\pi)^{n}(t_{1} - a) \cdot \cdot \cdot (t_{n} - t_{n-1})]^{-1/2}$$

$$\cdot \int_{-\infty}^{\infty} (n) \cdot \int_{-\infty}^{\infty} \psi(v_{n}) \cdot f_{1}(v_{1}) \cdot \cdot \cdot \cdot f_{n}(v_{n})$$

$$\cdot \exp\left(-\sum_{j=1}^{n} \frac{\lambda(v_{j} - v_{j-1})^{2}}{2(t_{j} - t_{j-1})}\right) dv_{1} \cdot \cdot \cdot \cdot dv_{n}$$

where $v_0 \equiv \xi$ and $t_0 \equiv a$.

PROOF. Let $K_{\lambda}(F)$ denote the operator defined by the right-hand side of (3). In order to show that $I_{\lambda}^{\text{seq}}(F)$ exists and equals $K_{\lambda}(F)$ it suffices to show that

$$\lim_{\mathbf{norm} \ \sigma \to 0} (I_{\lambda}^{\sigma}(F)\psi, \phi) = (K_{\lambda}(F)\psi, \phi)$$

for all ψ , $\phi \in L_2$ where $I_{\lambda}^{\sigma}(F)$ is given by equation (2). This follows since for any partition $\sigma: a = s_0 < s_1 < \cdots < s_m = b$ with norm $\sigma < \min\{t_1 - a, \cdots, t_n - t_{n-1}\}$ we obtain

$$(I_{\lambda}^{\sigma}(F)\psi)(\xi) = \lambda^{n/2} [(2\pi)^{n}(r_{1} - a) \cdot \cdot \cdot (r_{n} - r_{n-1})]^{-1/2} \cdot \int_{-\infty}^{\infty} (n) \cdot \int_{-\infty}^{\infty} \psi(v_{n}) \cdot f_{1}(v_{1}) \cdot \cdot \cdot f_{n}(v_{n}) \cdot \exp\left(-\sum_{j=1}^{n} \frac{\lambda(v_{j} - v_{j-1})^{2}}{2(r_{j} - r_{j-1})}\right) dv_{1} \cdot \cdot \cdot dv_{n}$$

by carrying out m-n integrations on the right side of equation (2), where $v_0 = \xi$, $r_0 = a$ and r_j is that s_k such that $s_k \le t_j < s_{k+1}$. Then as norm $\sigma \to 0$, $r_j \to t_j^-$ and so the result follows from the dominated convergence theorem.

For $\lambda > 0$, $K_{\lambda}(F)$ agrees with the Wiener integral given in equation (1) and is analytic for Re $\lambda > 0$ [2, p. 533], and so $I_{\lambda}^{an}(F)$ exists and equals $K_{\lambda}(F)$.

THEOREM. $J_q(F)$ exists for all real $q \neq 0$ and is given by the right-hand side of (3) where $\lambda = -iq$ and the integrals are interpreted in the mean. In fact $J_q(F)$ is the strong operator limit of $I_{\lambda}(F)$ as $\lambda \rightarrow -iq$ in the right-half plane.

PROOF. We will establish that the operator defined by the right-hand side of (3) (with $\lambda = -iq$), which we will temporarily denote by $K_q(F)$, is the strong operator limit of $I_{\lambda}(F)$ as $\lambda \rightarrow -iq$ in the right half plane; the first statement then follows. Careful examination of $I_{\lambda}(F)$ reveals that it is the composition of multiplication operators and convolution operators [2, p. 535]; i.e. $I_{\lambda}(F) = C_{1,\lambda} \circ M_1 \circ \cdots \circ C_{n,\lambda} \circ M_n$ where $C_{j,\lambda}$ and M_j are the elements of $\mathfrak{L}(L_2)$ defined respectively by

$$(C_{j,\lambda}\psi)(y) = \left(\frac{\lambda}{2\pi(t_j - t_{j-1})}\right)^{1/2} \int_{-\infty}^{\infty} \exp\left(\frac{-\lambda(y - x)^2}{2(t_j - t_{j-1})}\right) \psi(x) dx$$

and $(M_j\psi)(y) = \psi(y)f_j(y)$. Similarly $K_q(F) = U_1 \circ M_1 \circ \cdots \circ U_n \circ M_n$ where

$$(U_{i}\psi)(y) = \left(\frac{-iq}{2\pi(t_{i}-t_{i-1})}\right)^{1/2} \int_{-\infty}^{\infty} \exp\left(\frac{iq(y-x)^{2}}{2(t_{i}-t_{i-1})}\right) \psi(x)dx.$$

Now the map $(A, B) \rightarrow A \circ B$ of $L_2 \times L_2$ to L_2 is continuous in the strong operator topology as long as A is restricted to lie in a bounded subset of $\mathfrak{L}(L_2)$ [3, p. 512]. Since $||C_{j,\lambda}|| = 1$ it will suffice to show that $C_{j,\lambda} \rightarrow U_j(s.o.)$ where the s.o. refers to the fact that the convergence is with respect to the strong operator topology. This suffices since if $C_{n,\lambda} \rightarrow U_n(s.o.)$ then $C_{n,\lambda} \circ M_n \rightarrow U_n \circ M_n(s.o.)$ and $M_{n-1} \circ C_{n,\lambda} \circ M_n \rightarrow M_{n-1} \circ U_n \circ M_n(s.o.)$ and $C_{n-1,\lambda} \circ M_{n-1} \circ C_{n,\lambda} \circ M_n \rightarrow U_{n-1} \circ M_{n-1} \circ U_n \circ M_n(s.o.)$, etc. In showing $C_{j,\lambda} \rightarrow U_j(s.o.)$ it clearly suffices to consider the case where $t_j - t_{j-1} = 1$. Hence, in our notation, $U_j = U_q$ and $C_{j,\lambda} = C_{\lambda}$. Now to show $C_{\lambda} \rightarrow U_q(s.o.)$, it suffices to show $||C_{\lambda}\psi - U_q\psi||| \rightarrow 0$ for $\psi \in C_K$ since for $\psi_0 \in L_2$ we have the inequalities

(4)
$$||C_{\lambda}\psi_{0} - U_{q}\psi_{0}|| \leq ||(C_{\lambda} - U_{q})(\psi_{0} - \psi)|| + ||C_{\lambda}\psi - U_{q}\psi|| \\ \leq 2||\psi_{0} - \psi|| + ||C_{\lambda}\psi - U_{q}\psi||.$$

Now to show $||C_{\lambda}\psi - U_{q}\psi|| \to 0$, it suffices [4, p. 11] to show (a) $C_{\lambda}\psi \to U_{q}\psi$ weakly and (b) $||C_{\lambda}\psi|| \to ||U_{q}\psi||$. To obtain (a), it suffices to show $(C_{\lambda}\psi, \phi) \to (U_{q}\psi, \phi)$ for $\phi \in C_{K}$; one may see this by an inequality similar to (4). Since $(C_{\lambda}\psi, \phi)$ is a complex-valued function, it suffices to show $(C_{\lambda_{m}}\psi, \phi) \to (U_{q}\psi, \phi)$ along any sequence $\lambda_{m} \to -iq$ with Re $\lambda_{m} > 0$. But as $\psi, \phi \in C_{K}$, $|\psi\phi|$ is integrable over $(-\infty, \infty) \times (-\infty, \infty)$ and so the result follows upon application of the Fubini Theorem and the dominated convergence theorem.

To establish (b) it again suffices to show $\|C_{\lambda_m}\psi\| \to \|U_q\psi\|$ for any sequence $\lambda_m \to -iq$ with Re $\lambda_m > 0$. Now since $\|C_{\lambda_m}\psi\| = 1$ and U_q is an isometry, we have $\lim\inf\|C_{\lambda_m}\psi\| \le \lim\sup\|C_{\lambda_m}\psi\| \le \|\psi\| = \|U_q\psi\|$. But also, since balls about zero in L_2 are compact in the weak topology, only finitely many of the C_{λ_m} can be in any such ball of radius less than $\|U_q\psi\|$. Hence $\|U_q\psi\| \le \liminf\|C_{\lambda_m}\psi\|$ and so $\lim\|C_{\lambda_m}\psi\| = \|U_q\psi\|$ which completes the proof of the theorem.

COROLLARY. $J_q(F)$ is invertible as an element in $\mathfrak{L}(L_2)$ if and only if each f_j is bounded away from zero a.e. In this case $J_q(F)^{-1}$ is given by the formula

$$(J_{q}(F)^{-1}\psi)(\xi) = (iq)^{n/2} [(2\pi)^{n}(t_{1} - a) \cdot \cdot \cdot (t_{n} - t_{n-1})]^{-1/2}$$

$$\cdot \int_{-\infty}^{\infty} (n) \cdot \int_{-\infty}^{\infty} \psi(v_{n})$$

$$\cdot [f_{n}(\xi)f_{n-1}(v_{1})f_{n-2}(v_{2}) \cdot \cdot \cdot f_{1}(v_{n-1})]^{-1}$$

$$\cdot \exp\left(\frac{-iq}{2} \sum_{j=1}^{n} \frac{(v_{n-j+1} - v_{n-j})^{2}}{(t_{j} - t_{j-1})}\right) dv_{n} \cdot \cdot \cdot dv_{1}$$

where $v_0 \equiv \xi$ and $t_0 \equiv a$.

PROOF. It is easily verified [4, p. 32] that M_j is invertible if and only if f_j is bounded away from zero a.e., and, in this case, M_j^{-1} is multiplication by $1/f_j$. Thus under the conditions of the corollary, it follows from the lemma and theorem above that $J_q(F)^{-1} = M_n^{-1} \circ U_n^{-1} \circ \cdots \circ M_1^{-1} \circ U_1^{-1}$ exists and is given by (5). If $J_q(F)$ is not invertible, some M_j must fail to be invertible by the lemma and so f_j is not bounded away from zero a.e.

ACKNOWLEDGEMENT. The second author wishes to thank the University of Nebraska Research Council for financial support.

BIBLIOGRAPHY

- 1. R. H. Cameron, *The Ilstow and Feynman integrals*, J. Analyse Math. 10 (1962 /63), 287-361. MR 27 #831.
- 2. R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517-552.
- 3. N. Dunford and J. Schwartz, a) Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. b) Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.
- 4. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178.
- 5. D. L. Skoug, Generalized Ilstow and Feynman integrals, Pacific J. Math. 26 (1968), 171-192. MR 37 #6428.

University of Nebraska