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Abstract. Let Co[a, b] denote the space of continuous func-

tions x on [a, b] such that x(a) =0. Let F(x) =fi(x(ti)) ■ • ■ fn(x(tn))

where a = t<,<k< • ■ • <tn = b. Recently, Cameron and Storvick

defined an operator-valued "Feynman Integral." In their setting,

we give a strong existence theorem as well as an explicit formula

for the "Feynman Integral" of functionals F as above under

weak restrictions on the //s. We also give necessary and sufficient

conditions for the operator to be invertible and an explicit formula

for the inverse.

1. Introduction and notation. Let £(L2) be the space of bounded

linear operators on L2 = L2( — <x>, co). Let B [a, b] be the space of func-

tions on [a, b] which are continuous except for a finite number of

finite jump discontinuities.

We need the following definitions of Cameron and Storvick [2].

(The definitions are not intended to imply the existence of the oper-

ators involved. In fact the main theorems of [2] give various condi-

tions on F insuring the existence of these operators.) Let ^£L2,

££(— °° , °°). and F a functional on B [a, b]. For X>0, I\(F) is the

operator on L2 defined by the Wiener integral

(1) (h(F)+)(H) =  f        F(X~l'2x + £)+(X-v2x(b) + Qdx.

For ReX>0, Ixn(F) is defined to be the operator-valued function of X

which agrees with I\(F) for X>0 and is analytic throughout Re X>0.

For ReX>0 and any partition a: a=s0<Si< ■ ■ ■ <sn = b the oper-

ator I\(F) is defined by the formula

(ll(F)m) = Xn/2[(2x)»(5i - a) ■■■ (sn - sn-i)]'112 r -(n)
" — oo

(2)

//         "     X(Vj -  ?y_i) \
Mvn) -f^, vi, ■ ■ ■ , vn) exp ( - 2^ —-r ]dvi ■ ■ ■ dvn

\     y=i   2(sj — Sj-i) /
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where Vo=%,f,(vo, »i, • • • , vn) = F[z(a, v0, vh ■ ■ ■ , vn, ■)] and

z(a, Vo, vi, ■ ■ ■ , vn, s) = Vj        if Sj g s < Sj+i, j = 0, 1, • • • , n — 1

= v„       if s = b.

(If n is odd we always choose X1'2 with nonnegative real part.) For

Re X>0, the operator Iiea(F) is defined by

l7(F) = w    lim    ll(F)
norm tr—*0

where w lim means the limit with respect to the weak operator topol-

ogy on £(Li). In case both IT(F) and I\'l(F) exist and agree we will

denote their common value by I\(F). Finally for X= —iq,qE(—cc, <*>),

q^O, the operators J™(F) and 7fq(F) are defined by

f*(F) = w lim C-i„(F)    and   jT(F) = ""> hm f^.iq(F).
p->0* p-t0*

Again if both exist and agree we denote their common value by Jg(F).

Throughout the rest of this paper we assume that F has the special

form given in the abstract, where each /,- is measurable and satisfies

||/j|U<00- This restriction on the //s is much weaker than in [l,

pp. 333-348] and [5, pp. 177-185] where Cameron's earlier definition

of the Feynman and related integrals was employed to study func-

tionals of the same type.

The main theorem below does more than establish the existence

of Jq(F) and give a formula for it. First, it shows that Jq(F) is the

strong operator limit of I\(F) rather than just the weak operator

limit; secondly, the approach of X to —iq is restricted only to the

open right half plane and not to the line p—iq. We mention also that

the existence of Jq(F) is established for every qp^O. In [2], where

more complicated functionals F are dealt with, the theorems give

existence of Jt(F) for almost every q, but for specific q, one cannot

tell whether Jq(F) exists or not.

We will see below that A(F) and Jt(F) are compositions of multi-

plication and convolution operators. In the lemma we study the

appropriate convolution operators. We also use the following nota-

tion:

I    f(u, y)du = l.i.m. f(u, v)du
J -oo A-*"    J-A

which means
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/co j Cy)     /* oo r, A 2

I    f(u, y)du —  I    f(u, y)du   dy = 0.
-co I       J -co J -A

2. Lemma, (a) Let
iv)  C x        (qi(y - x)2\

(Uq+)(y) = (-iq/2^2    J    exp V ) *(*)dx

for ipEL2, yE( — °°, °°) and real qy±0. Uq is a unitary operator on L2

and U\= Uql = U-q where Uq denotes the adjoint of Uq.

(b) Let

//-My - x)2\exp (--J ^(x)dx

for\pEL2, yE(— co, °°) and ReX>0. C\ is in £(L2), it is one-to-one,

its range is contained in the set of equivalence classes of L2 which contain

a continuous function, and \\C\\\ =1.

Proof, (a) The fact that Uq is an isometry in £(L2) is shown in

Lemma 1 of [2], hence to show Uq unitary, we only need to show that

it is onto. Now

(Uqxfr)(y) = (-iq/2Try'2 exp (iqy2/2) 3[exp(iqxy2)xp(x)](qy)

where SF denotes the L2-Fourier transform. Thus to show Uq onto it

suffices to show that, given an L2 function 4>(y), there exists an L2

function \p such that

fffexp (iqx2/2)ip(x)](qy) = (2tt/— iq)1/2 exp (—iqy2/2)<p(y).

This follows since the maps ^(x)—^-exp (iqx2/2)\p(x) and ff are both

onto L2 and the q appearing in the argument just brings about a

change of scale.

Since U~l=U* holds for any unitary operator, we need simply

show Uq= U-q. Now the space Ck of continuous functions on

(— oo, oo) with compact support is dense in L2 and so to show U\

= U-q it suffices to show (Uq\p, <p) = (\}/, U-qCp) for \p, 4>ECk- This

follows from the Fubini Theorem since the integrand in each case is

dominated by the integrable function |g| 1/2|^(x)||</)(y)|.

(b) C\ is one-to-one for (C\\p)(y) =0 a.e, implies ^(x) =0 a.e. since

the Fourier transform of a convolution is the product of the Fourier

transforms and the Fourier transform of exp (—Xx2/2) never vanishes.

For any i/'£L2, (C\\p)(y) is continuous since the convolution of L2

functions is continuous.

In Lemma 1 of [2], Cameron and Storvick show that ||Cx]|^l.

Using a comment in [3, p. 1045] one can show quite easily that

||Cx||=l. However, the following elementary proof seems more in-
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structive. Let \<r<k<l be given. It suffices to find^£A2 such that

\\\p\\ =1 and ||Cxi/'||>r. Let a2 = 21X|~2Re X. Now choose integers m

and n such that (2w<r2)-1l2f'ZM exp(-x2/2cr2)dx>k and (n-ma)k/n

>r. Let ^(x) = (2w)_1/2X(-B,n)(x). Then ||^||=1, and by use of the

formula

/■-       f-\(x-H)2 -\(u-£)2\

jjxp \—2-2—r

/- I X|2(* - y)2\
= (rr/Re X)"2 exp '       ' Y

\        4 Re X        /

We obtain

/°° C °°                        /—(x — u)2\j    *(«)*(*) exp (^-—-j rfx <to

/n    /» tt-f-n

I        exp (-52/2<r2)^ du
—n ^ u—n

/n—nur      /» u+n

I        (2™*)-1'* exp (-s2/2o2)ds du
—n+mtr ^ w—n

/n—rmr      /•nur

I      (27ro-2)-1/2 exp (-s2/2a2)ds du
-ji+wkt *' —ma

= (2m - 2mo)k/2n > r > r2.

The following proposition establishes the existence of the operator

I\(F) for the class of F's we are considering.

Proposition. I\(F) exists for all\ such that Re X>0 and is given by

(UP)*)®   =   \"'2[(2T)»(tl  -   a)   ■   ■   ■   (tn   -   tn-i)]-1'2

(»)•    I      <P(Vn)-fl(vi)   ■   ■   ■/»(»»)
-oo J -00

/      "   Xfa- - i>,-i)2^
• exp 1 — 2^ —-r ] dvi ■ ■ ■ dv„

\    ,=i    2(tj - tj-i) )

where Vo=^ and t0=a.

Proof. Let K\(F) denote the operator defined by the right-hand

side of (3). In order to show that I\*(F) exists and equals AX(F) it

suffices to show that
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lim    (/x(F)*, <t>) = (KX(F)4, j)
norm ff~*0

for all \p, 4>EL2 where I\(F) is given by equation (2). This follows

since for any partition a: a = s0<Si< ■ ■ ■ <sm = b with norm a

<min{ti — a, • ■ • , tn — tn-i} we obtain

(K(F)*KQ = X»'2[(2x)»(r, - a) ■ ■ • (r„ - ^-i)]-1'2

• J"(»)- J fW'/.(»i) •• •/»(».)
/      «    Xfa-^-i)2\

•exp I — 2^ —-r) »»i • • • dvn
\      ,_!     2(ry-ry_i)/

by carrying out m — n integrations on the right side of equation (2),

where v0=^, r0 = a and ry is that 5* such that sk^tj<sk+i. Then as

norm a—>0, r}—*t7 and so the result follows from the dominated con-

vergence theorem.

For X>0, K\(F) agrees with the Wiener integral given in equation

(1) and is analytic for Re X>0 [2, p. 533], and so IT(F) exists and

equals K\(F).

Theorem. Jg(F) exists for all real qy^O and is given by the right-hand

side of (3) where X = — iq and the integrals are interpreted in the mean.

In fact Jq(F) is the strong operator limit of I\(F) as X—> — iq in the right-

half plane.

Proof. We will establish that the operator defined by the right-

hand side of (3) (with X= —iq), which we will temporarily denote by

Kq(F), is the strong operator limit of I\(F) as X—> — iq in the right

half plane; the first statement then follows. Careful examination of

h(F) reveals that it is the composition of multiplication operators

and convolution operators [2, p. 535]; i.e. I\(F) = Ci,\ o Mi o • • •

o C„,x o M„ where Cy.x and Mj are the elements of £(L2) defined

respectively by

/      x      V'2 /•"      /-My-x)2\

<c"ww-(i^-o) J>pfeFw)*w*
and (Mji}/)(y) =ip(y)fj(y). Similarly Kq(F) =UioMio • • • o U„ of,

where

/     -iq     V'2   ("' r x      / My - x)2 \
(Ujtf (y) = ( —-H— ) exp    J/ ) Hx)dx.

\2v(lj - tj-i)/ J-„        \2(tj - lj-i)/
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Now the map (A, B)—*A o B of A2XA2 to A2 is continuous in the

strong operator topology as long as A is restricted to lie in a bounded

subset of £(Li) [3, p. 512]. Since || Cy,x|| = 1 it will suffice to show that

Cj,\—>Uj(s.o.) where the s.o. refers to the fact that the convergence is

with respect to the strong operator topology. This suffices since if

Cn,\-*U„(s.o.) then Cn,\ o Mn-^Un o Mn(s.o.) and Mn-i o Cn,\ o Mn

-*Mn-i oUno Mn(s.o.) and C„_i,x o AF„_i o Cn,\ o ikfn—>£/„_i o Mn-i

o Un o Mn(s.o.), etc. In showing Cy,x—>■£/,-(s.o.) it clearly suffices to

consider the case where tj—<y_j = l. Hence, in our notation, [/,= Uq

and Cy,x = Cx. Now to show C\—+Uq(s.o.), it suffices to show

||C\\p— £/<^||—>0 for \(/ECk since for ^0£A2 we have the inequalities

||Cx*„ - Uq+o\\ g ||(Cx - Uq)(+o - *)|| + \\Ctf - uq+\\

^211^0-^11+11^^-^11.
Now to show ||Cx^— Uq^\\—>0, it suffices [4, p. 11 ] to show (a)

Cyip^U^ weakly and (b) ||CxiA||—HI ^sV'H- To obtain (a), it suf-
fices to show (C\\p, <t>)—*(Uq\[/, <p) for 4>ECk; one may see this by

an inequality similar to (4). Since (C\>p, (b) is a complex-valued

function.it suffices to show (C\m\p,4>)—>(Uq\p,<b) along any sequence

Xm—*—iq with Re Xm>0. But as \p, 4>ECk, \^P4>\ xs integrable over

(— oo, oo) X(— <», 0°) and so the result follows upon application of

the Fubini Theorem and the dominated convergence theorem.

To establish (b) it again suffices to show||Cxm^ —>\\ Uqip\\ for any

sequence \m-+—iq with Re Xm>0. Now since ||Cx„ = 1 and Uq is an

isometry, we have lim inf ||Cxm^|| glim sup ||Cxm^|| g|M| =||t/4^||. But

also, since balls about zero in £2 are compact in the weak topology,

only finitely many of the C\„ can be in any such ball of radius less

than || Utf\\. Hence || Uq+\\ glim inf ||CxjA|| and so lim || C^j\\ =|| Ujl>\\
which completes the proof of the theorem.

Corollary. Jq(F) is invertible as an element in £(Li) if and only if

each fj is bounded away from zero a.e. In this case Jq(F)_1 is given by

the formula
ii)

(/9(F)-V)(£) = (iq)"'2[(2Tnti - a) •••(/„ - tn-i)]-1'2

C °°        (»»-i) c <*>
(«)■ *(».)

(5) -M ""
■[fnWn-l(Vl)fn-2(vi)   ■   ■   •/l(*>„-l) ]"'

/-iq   "    (vn-j+i - vn-j)2\

■exprr£  (ti-tj-o )*>••■■**
where zio— £ and to = a.
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Proof. It is easily verified [4, p. 32] that Mj is invertible if and

only if/y is bounded away from zero a.e., and, in this case, MJX is

multiplication by l//y. Thus under the conditions of the corollary, it

follows from the lemma and theorem above that Jq(F)~l = M^x o U^1

o • • • o Mi1 o Ui1 exists and is given by (5). If Jq(F) is not invert-

ible, some Mj must fail to be invertible by the lemma and so /y is not

bounded away from zero a.e.
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