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1. Introduction. Suppose A is a set, F is a field of subsets of U,

p is the set of all real-valued functions defined on F, pB is the set of

all bounded elements of p, p+ is the set of all nonnegative-valued ele-

ments of p, ps =PbI^P+, Pa is the set of all bounded finitely additive

elements of p, and pi =p^P\p+. Suppose furthermore that for each p

in p^, Ctf, is the set of all £ in pA absolutely continuous with respect to

ju, and &„ is the set of all a in pB such that the integral (§2)

f <*(I)p(I)
J u

exists. Finally, suppose Z is the set of all j3 in p such that for each I

in F, 8(1) is 1 or 0.

In a previous paper [l] the author demonstrated a theorem, part

of which is the following equivalence assertion:

Theorem l.A.l. If each of p and £ is in pj, then the following two

statements are equivalent:

(1) If 8 is in ZH^nifi and fvB(I)n(I) = 0, then fuB(I)Z(I) = 0.
(2) | is in <2„.

In the same paper the author gave the following characterization

theorem:

Theorem l.A.2. The following two statements are equivalent:

(1) If v is in pt and n(U)>0, then there is some element of pj not

in 0,.

(2) If each of ju and £ is in pj, then £ is in a„ iff pjn^cpjf^

(which the reader can easily see is true iff 0„C£j).

In proving that in Theorem l.A.2, (1) implies (2), it was shown,

without using (1), that if each of p. and £ is in pX and £ is in <2„, then

pB^^CpjjfVj (and hence that 0„C£j); furthermore, in proving that

(2) implies (1), the only part of (2) used was the statement that

pjjjrVMCpJrVj implies that £ is in (2M. We can therefore give the

following more specific version of Theorem l.A.2:
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Theorem l.A.3. The following two statements are true:

(1) If each of p. and £ is in pi and £ is in fi„, then 0uQd(.

(2) The following two statements are equivalent:

(i) If v is in pi and i](U)>0, then there is some element of pi not

inS„.

(ii) If each of p, and £ is in pi and ^C^£) then £ is in &„.

Theorems l.A.l and l.A.3 therefore tell us that absolute continuity

has an integral characterization in terms of Z, that absolute continu-

ity implies a certain integrability set inclusion property, and that the

only circumstance under which integrability set inclusion fails to

imply absolute continuity is when a certain nonintegrability assertion

fails to hold. Therefore the question naturally arises as to whether

integrability set inclusion has an integral characterization in terms

of Z. In this paper we prove the following characterization theorem

(§3):

Theorem 3.1. If each of p. and £ is in pi, then the following two state-

ments are equivalent:

(1) If 8 is in ZHSM and Ju8(T)p(I) =0, then 8 is in #t;
(2) ^Ctfj.

2. Preliminary theorems and definitions. We refer the reader to

§§2 and 3 of [l] for some of the basic theorems and definitions used

in this paper, and when the existence of an integral or its equivalence

to an integral is an easy consequence of the above mentioned ma-

terial, the integral need only be written, and the proof of existence

or equivalence left to the reader.

We close this section by referring the reader to §2 of another paper

of the author [2 ] for notions pertaining to S-boundedness and upper

and lower integral, as well as pertinent basic facts, conventions and

notation.

3. The integrability inclusion characterization theorem. We begin

this section by stating a lemma about "sum supremum" and "sum

infimum" functionals defined in [2] that the reader can easily prove.

Lemma 3.1. If a is in p and is X-bounded with respect to the sub-

division 3) of U and O^c, then cs*(a) =s*(ca) and cs*(a) =s*(ca).

We now prove Theorem 3.1, as stated in the introduction.

Proof of Theorem 3.1. It is obvious that (2) implies (1).

Suppose (1) is true, but that for some y in pB, y is in #M and not in

^r£(£0>0. We adopt the convention that if each of a and & is a num-

ber, then a/b = 0 if b = 0, and has the usual meaning otherwise.
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There is a number M >0such that | -y (A) j ^ Af for all fin F. Letting

a=y-|-Af, we see that a is in pjr^and not in 0j, and that a(J) :£2Af

for all / in F.

Let 77 be the element of pi defined by

n(V) =  f maxf^/), £(/)}.
J v

r](U)>0. We easily see that£/?7 is inpjf^,. If a is in £f,, then it follows

from Theorem 2.A.1 of [l] that («)(£/?;) is in &v, and since

f a(I)Ul)/v(I)]v(D =   f <x(I)Z(I),

it follows that a is in ffj, a contradiction. Therefore a is not in tf„.

Now, let 8=a— [s*(ar])]/rj. Obviously 5 is in pj. Since [s*(a?7)]/?7 is

clearly in 0, and a is not, it follows that 5 is not in £f,. Therefore

f s*(5„)(f) <   f S*(5n)(I).
J u J v

We now show that s*(8-n)(V) =0 for all V in F. Suppose V is in F

and 0<c. Obviously 0^s*(5?j)(F). There is a subdivision 3) of Fsuch

that

0 ^ \ Z a(I)r,(I)~\ - S*(cw?)(F) < c,
L ® J

so that

a*(&j)(F) = £ [«(/)i7(7) - s*(«i,)(/)]
£1

i[E«Wi(/)l-«*W(n <«.

Therefore s*(5??)(F) =0 for all V in F, so that

0=   fs*(J,)(Z).

We now show that 5 is in 0„ and fu8(I)p(I) =0. Since each of p/n

and [s*(ar7)]/7j is in dn, it follows, again from Theorem 2.A.1 of [l],

that (p/n)([s*(ar])]/y) is in 0„ and, since
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f  [n(I)/v(I)][{s*(aV)(I)}/v(I)Hl) =   f  [{s*(ar,)(I)}Ml)Ul),
J u J u

it follows that [s*(a»?)]/?? is in #„. Since a is in g„, it follows that 8 is

in 0M. Now, suppose 0<c. From a theorem of Kolmogoroff [3] (see

also §2 of [l]) it follows that there is a subdivision 3) of U such that

if (5 is a refinement of 33, then

Z a(IMI) -   f a(J)u(J)   < c/4

and

Z [{s*H)(/)}A(/)]p(/) -  f [{S*(a^)(/)}A(/)]p(/)   < c/4.

Now, for each /' in 3) there is a subdivision 3)/' of I' such that

[ Z «(■/)*(/)] - «*(«i»)(/') < c/(4tf),

where N is the number of elements of 35, so that

O^E HJ)v(J) - s*(av)(J)]

^    Z «(/)«?(/)! - s*(*v)(T) < c/(4N).
Lay J

Now,

o =s r 5(/)M(/) ^ z z n r «(/')/*(/') - «(/)/*(/)
J u s s,' L| >//

+ \a(J)ix(J) - [{s*(ar,)(j)}/v(j)W)\ + I [{s*M(y)}A(/)k/)

- £[{a*(«7)(/')}A(/')W) I] < c/4

+ [ Z Z I «(■/) - [{s*M(/)} /„(/)] I m(/)1 + c/4
L  s>  Ty J

^ c/4 + [ Z Z I «C0 - [{s*(av)(J)}/v(J)] | 7,(7)1 + c/4
L ® ay J

= c/4 + [ Z Z {«(/)„(/) - a*(o,)(/)}l + c/4
L   3)   Sy

< c/4 + Nc/(4N) + c/4 = 3c/4 < c.
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Therefore fu 8(I)p(I) =0.
Since 5 is in p# and not in d„, it follows that there is a t> 0 such that

if !S is a subdivision of U, then there is a refinement @ of 3) such that

l<y^e 8(I)n(I). Let X be the element of pj defined by

\(I) = t/[2v(U)]        if 5(7) = //[2,(L0],

= 0       otherwise.

Since each of X and 5—X is in pj, it follows that

r \(i)p(D=o = r s*(\v)(i).
J u J V

Let w denote (\Mn(U)/1)\. fu w(7)ju(7)=0, and from Lemma 3.1

it follows that fu s*(co??)(7) =0. Furthermore,

«(/) = 2Af        if 8(1) = t/[2r,(U)],

= 0       otherwise.

Now, suppose 3) is a subdivision of U. There is a refinement (g of £>

such that f < Z@5(I)rj(I). Obviously there is an 7 in @ such that 8(1)

^t/[2v(U)]. Letting <§* = {/|/in (8, «(/)£*/[2ij(£7)]}, we have

<<£s(7MJ)^/2+E«C0>7(7),

so that

t/2 < Z 8(7)1,(7) = E 2Af„(7)

= 2>(7)„(7) = Z^(7),(7) = e»*ww.

Therefore

f s*(co,)(7) = 0 < t/2 ^  f s*(u,t,)(I),

so that co is not in #,.

Let o- = (1/ [2 Af ])w. We easily see that or is in ZH^ and fv a(I)p(I)

= 0. We also see from Lemma 3.1 that

f s*(^)(7) = 0 < t/[4M] =   f s*(<n?)(7),

so that a is not in £,. If <r is in £j, then
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j maxif *(J)u(J), J<r(/)£(/)|

-  f max{<r(/)p(/),<7(/)£(/)}

=  f a-(I) f max{p(/),£(7)} =   f o-(I)V(I),

so that <r is in £„ a contradiction. Therefore a is not in ££, a contra-

diction.

Therefore (1) implies (2).

Therefore (1) and (2) are equivalent.
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