AN m-ORTHOCOMPLETE ORTHOMODULAR LATTICE IS m-COMPLETE

SAMUEL S. HOLLAND, JR.

ABSTRACT. We call an orthomodular lattice \mathcal{L} *m*-orthocomplete for an infinite cardinal m if every orthogonal family of $\leq m$ elements from \mathcal{L} has a join in \mathcal{L} , and we call \mathcal{L} *m*-complete if every family, orthogonal or not, of $\leq m$ elements from \mathcal{L} has a join in \mathcal{L} . We prove that an m-orthocomplete orthomodular lattice is m-complete. Since a Boolean algebra is a distributive orthomodular lattice, we obtain as a special case the Smith-Tarski theorem: An m-orthocomplete Boolean algebra is m-complete.

We refer the reader to [1] for the elementary theory and basic nomenclature of orthomodular lattices, mentioning specifically here only these notational conventions: we write a-b for $a \wedge b^{\perp}$ when $b \leq a$, and write $\bigoplus a_{\alpha}$ for $\forall a \in A$ when $\alpha \neq \beta \Rightarrow a_{\alpha} \perp a_{\beta}$.

LEMMA. Let \mathcal{L} be an m-orthocomplete orthomodular lattice, σ an ordinal number satisfying $\operatorname{card}(\sigma) \leq m$, and $(y_{\alpha}; \alpha < \sigma)$ a family of elements from L satisfying

- (i) $y_0 = 0$,
- (ii) $\alpha \leq \beta < \sigma \Rightarrow y_{\alpha} \leq y_{\beta}$ (increasing),
- (iii) β a limit ordinal $\langle \sigma \Rightarrow \forall (y_{\alpha}; \alpha < \beta) \text{ exists and } = y_{\beta} \text{ (continuous from the left)}.$

Then for every ordinal β satisfying $2 \leq \beta < \sigma$ we have

$$V(y_{\alpha}; \alpha < \beta) = \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta).$$

Proof of the Lemma. Both joins displayed in the assertion of the lemma exist, the orthogonal join by m-orthocompleteness, and the other by assumption (iii). (Assumption (iii) covers the case when β is a limit ordinal; if β is not a limit ordinal, then obviously $\bigvee (y_{\alpha}; \alpha < \beta) = y_{\beta-1}$.) If $\beta + 1 < \beta$, then $y_{\beta+1} - y_{\beta} \le y_{\beta+1} \le \bigvee (y_{\alpha}; \alpha < \beta)$; hence

$$\bigoplus (y_{\rho+1}-y_{\rho}; \rho+1<\beta) \leq V(y_{\alpha}; \alpha<\beta).$$

We need therefore prove only the statement $P(\beta)$: $V(y_{\alpha}; \alpha < \beta) \le \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta)$. P(2) is the assertion $y_1 \le y_1 - y_0$ which is true because $y_0 = 0$. We use transfinite induction. Assume that $P(\gamma)$

Received by the editors June 30, 1969.

AMS Subject Classifications. Primary 0635, 0660.

Key Words and Phrases. Orthomodular lattices, Boolean algebras, m-orthocomplete, m-complete, Smith-Tarski theorem.

is true for all $\gamma < \beta$. If β is a limit ordinal, then for any $\alpha < \beta$, $\alpha + 1 < \beta$ and then, using the induction hypothesis,

$$y_{\alpha} = V(y_{\sigma}; \sigma \leq \alpha) = V(y_{\sigma}; \sigma < \alpha + 1)$$

$$\leq \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \alpha + 1) \leq \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta).$$

Hence $V(y_{\alpha}; \alpha < \beta) \leq \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta)$. If β is not a limit ordinal, then $V(y_{\alpha}; \alpha < \beta) = V(y_{\alpha}; \alpha \leq \beta - 1) = y_{\beta-1}$. Now there are two possibilities: either $\beta - 1$ is a limit ordinal or it is not. If $\beta - 1$ is a limit ordinal, then by (iii) and the induction hypothesis,

$$y_{\beta-1} = V(y_{\alpha}; \alpha < \beta - 1) \leq \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta - 1)$$

$$\leq \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta)$$

and we are done. If $\beta-1$ is not a limit ordinal, then

$$\bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta)
= \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 \leq \beta - 1)
= (y_{\beta-1} - y_{\beta-2}) \oplus \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta - 1)
\geq (y_{\beta-1} - y_{\beta-2}) \oplus \bigvee (y_{\alpha}; \alpha < \beta - 1)
= (y_{\beta-1} - y_{\beta-2}) \oplus y_{\beta-2} = y_{\beta-1},$$

which proves $P(\beta)$. (In the second to the last step we used the induction hypothesis.)

THEOREM. An m-orthocomplete orthomodular lattice is m-complete.

PROOF. By induction. Let $(x_{\gamma}; \gamma \in \Sigma)$ be a family of elements from $\mathfrak L$ indexed by a set Σ with $\operatorname{card}(\Sigma) \leq m$, and assume that the join of any Σ' -indexed family exists when $\operatorname{card}(\Sigma') < \operatorname{card}(\Sigma)$. Let σ be the least ordinal corresponding to $\operatorname{card}(\Sigma)$. We can suppose that $\operatorname{card}(\Sigma)$ is infinite so that σ is a limit ordinal, and we can suppose that we have replaced the set Σ by the set $(\alpha; \alpha < \sigma)$ so that we are dealing with an ordinal-indexed family $(x_{\alpha}; \alpha < \sigma)$. By the induction assumption $y_{\alpha} = V(x_{\rho}, \rho < \alpha)$ exists for every $\alpha < \sigma$. This family $(y_{\alpha}; \alpha < \sigma)$ satisfies the conditions of the lemma, (i) and (ii) being obviously met, and (iii) being a consequence of the following direct computation for β a limit ordinal $<\sigma$: $V(y_{\alpha}; \alpha < \beta) = V_{\alpha < \beta} V(x_{\rho}; \rho < \alpha) = V(x_{\rho}; \rho < \beta) = y_{\beta}$.

The orthogonal join $z = \bigoplus (y_{\alpha+1} - y_{\alpha}; \alpha + 1 < \sigma)$ exists by *m*-orthocompleteness; this element z is the desired join, $V(x_{\rho}; \rho < \sigma)$.

First, note that if z is in fact an upper bound of the set $(x_{\rho}; \rho < \sigma)$, then, among all such upper bounds, it is certainly the least. For if $w \ge x_{\rho}$ for all $\rho < \sigma$, then $w \ge V(x_{\rho}; \rho < \alpha + 1) = y_{\alpha+1} \ge y_{\alpha+1} - y_{\alpha}$ for all

 $\alpha+1<\sigma$ so $w\geq z$. Hence it is enough to show that $z\geq x_{\beta}$ for every $\beta<\sigma$.

If $\beta < \sigma$ then, σ being a limit ordinal, we have $\beta + 2 < \sigma$, whence

$$x_{\beta} \leq V(x_{\rho}; \rho < \beta + 1) = y_{\beta+1} = V(y_{\alpha}; \alpha \leq \beta + 1)$$
$$= V(y_{\alpha}; \alpha < \beta + 2) = \bigoplus (y_{\rho+1} - y_{\rho}; \rho + 1 < \beta + 2) \leq z,$$

where, in the second-to-the last step, we have used the lemma. That proves the theorem.

Call an orthomodular lattice \mathcal{L} orthocomplete if it is m-orthocomplete for every m (or for $m = \operatorname{card}(\mathcal{L})$ which is enough).

COROLLARY 1. An orthocomplete orthomodular lattice is complete.

An orthomodular lattice \mathcal{L} satisfies the "m-chain condition" (I am adapting this nomenclature from Sikorski [2, p. 72]) provided that any orthogonal family in \mathcal{L} has $\leq m$ nonzero elements.

COROLLARY 2. An m-orthocomplete orthomodular lattice satisfying the m-chain condition is complete.

For $m = \aleph_0$, this was proved by Zierler [3, Lemmas 1.8 and 1.9].

COROLLARY 3 (SMITH-TARSKI; SEE [2; §20.1]). An m-orthocomplete Boolean algebra is m-complete.

COROLLARY 4 (TARSKI; SEE [2; §20.5]). An m-orthocomplete Boolean algebra satisfying the m-chain condition is complete.

REFERENCES

- 1. S. S. Holland, Jr., "The current interest in orthomodular lattices," in *Trends in lattice theory*, Van Nostrand, Princeton, N. J., 1969.
- 2. R. Sikorski, *Boolean algebras*, 2nd ed., Academic Press, New York and Springer-Verlag, Berlin, 1964. MR 31 #2178.
- 3. N. Zierler, Axioms for non-relativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151-1169. MR 25 #4385.

University of Massachusetts, Amherst, Massachusetts 01003