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Abstract. We call an orthomodular lattice £ m-orthocomplete

for an infinite cardinal m if every orthogonal family of Sm ele-

ments from £ has a join in £, and we call £ m-complete if every

family, orthogonal or not, of %m elements from £ has a join in £.

We prove that an »z-orthocomplete orthomodular lattice is m-

complete. Since a Boolean algebra is a distributive orthomodular

lattice, we obtain as a special case the Smith-Tarski theorem: An

m-orthocomplete Boolean algebra is m-complete.

We refer the reader to [l] for the elementary theory and basic

nomenclature of orthomodular lattices, mentioning specifically here

only these notational conventions: we write a — b for aA6x when

b^a, and write (J)aa for Vaa when ayiB=$aa-Lap.

Lemma. Let £ be an m-orthocomplete orthomodular lattice, a an

ordinal number satisfying card(cr)^?ra, and (ya; a<cr) a family of

elements from L satisfying

(i) yo = 0,

(ii) a^t8<<r=*ya=yp  (increasing),

(iii) 8 a limit ordinal <cr=>\/(ya; a<8) exists and =y$ (continuous

from the left).

Then for every ordinal 8 satisfying 2^8<a we have

V(ya;a<(3) =0(yp+i-y,;p+l < 0).

Proof of the Lemma. Both joins displayed in the assertion of the

lemma exist, the orthogonal join by raz-orthocompleteness, and the

other by assumption (iii). (Assumption (iii) covers the case when 8

is a limit ordinal; if j3 is not a limit ordinal, then obviously

V(y«;a</3)=y(J-i-) If P + 1<P, then yP+]-yP^yP+i^V(y«; a<8);

hence

© On-i - JA p + K 8) ^ V (ya; a < 8).

We need therefore prove only the statement P(B): V(ya; a<8)

= © (yp+i— %; P + l<)3)- P(2) is the assertion yi^yi— yo which is

true because yo = 0. We use transfinite induction. Assume thatPCy)
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is true for all y<8- If (3 is a limit ordinal, then for any a<8, a + 1 </3

and then, using the induction hypothesis,

y« =  V(y,; a S a) =  V(y„; o < a + 1)

= © 6v+i - yP;p + K a + 1) ^ © (yP+i - yP;P + 1< fi).

Hence V(y„;a</3) ^ © (yp+i — yP;p + l </3). If j3is not a limit ordinal,

then V(ya; a</3) = V(ya; a^j3 — 1) = ya-i- Now there are two possi-

bilities: either j8 —1 is a limit ordinal or it is not. If /3 —1 is a limit

ordinal, then by (iii) and the induction hypothesis,

ye-i =   V (ya;a < fi - 1) = © (yP+, - yP;P + 1< 0 - 1)

= ©(>'p+1->-p;p+i <«

and we are done. If 8 — 1 is not a limit ordinal, then

0CM-i-yp;p + i </3)

= ©(yP+i-yP;p+i^/3-D

= (yo-i - yn-i) © © (yP+1 - y„;p + 1 < /J - 1)

=   Gfe-i  ~  ya-i)   ©    V  (ya; a  < fi -   1)

= (ys-i - y»-i) © y/s-2 = ye-i,

which proves P(8). (In the second to the last step we used the induc-

tion hypothesis.)

Theorem. An m-orthocomplete orthomodular lattice is m-complete.

Proof. By induction. Let (x7; 7£2) be a family of elements from

£ indexed by a set 2 with card(2) ^m, and assume that the join of

any 2'-indexed family exists when card(2') <card(2). Let a be the

least ordinal corresponding to card (2). We can suppose that card (2)

is infinite so that cr is a limit ordinal, and we can suppose that we

have replaced the set 2 by the set (a; a<a) so that we are dealing

with an ordinal-indexed family (xa; a<a). By the induction assump-

tion ya=V(^p, p<a) exists for every <x<cr. This family (ya; a<o)

satisfies the conditions of the lemma, (i) and (ii) being obviously met,

and (iii) being a consequence of the following direct computation for

8 a limit ordinal <cr: V(y«; a<8) = Va<a V(x„; p<a) = V(xP; p<8)

= Va-
The orthogonal join 2 = ©(y„+i — ya; a + 1 <cr) exists by m-ortho-

completeness; this element z is the desired join, V(xp; p<<r).

First, note that if 2 is in fact an upper bound of the set (x„; p<cr),

then, among all such upper bounds, it is certainly the least. For if

w^x„ for all p<o-, then w^V(x„; p<a + l) =ya+i^ya+i-ya for all
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a + Ka so w^z. Hence it is enough to show that z^x# for every

8<<X.
If B<a then, er being a limit ordinal, we have 8 + 2 <a, whence

xjS  V (xP;p < 8+ 1) - y^+i =  V (ya;a £0+1)

=   V (ya;a < 8 + 2) = 0 (y„+1 - yp;p + 1< 0 + 2) ^ z,

where, in the second-to-the last step, we have used the lemma. That

proves the theorem.

Call an orthomodular lattice £ orthocomplete if it is m-orthocom-

plete for every m (or for w = card(£) which is enough).

Corollary 1. ^4ra orthocomplete orthomodular lattice is complete.

An orthomodular lattice £ satisfies the "w-chain condition" (I am

adapting this nomenclature from Sikorski [2, p. 72]) provided that

any orthogonal family in £ has ^m nonzero elements.

Corollary 2. ^4ra m-orthocomplete orthomodular lattice satisfying

the m-chain condition is complete.

For m = H0, this was proved by Zierler [3, Lemmas 1.8 and 1.9].

Corollary 3 (Smith-Tarski; see [2; §20.1]). ^4ra m-orthocomplete

Boolean algebra is m-complete.

Corollary 4 (Tarski; see [2; §20.5]). An m-orthocomplete Boolean

algebra satisfying the m-chain condition is complete.
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