
ON SLOW VARIATION
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A positive function L on the positive real line is said to be "slowly

varying at infinity" if, for each t>0:

L(xt)

x-»»   L(x)

Karamata [3] has proved that if L is continuous, then

ax t(y)   \— dy)

where e(x)—>0 and a(x)—*c£(0, ») as x—*•+». Feller [2, pp. 272—

274] gives a new exposition of the theory and a proof of (1), implic-

itly assuming not the continuity, but the local integrability of L on

some half line (A, <»). But it has been already proved [l], [4]1 that

measurability of L is enough.

From (1), it follows that [2, footnote p. 302]:

(2) lim x"L(x) =oo, lim  x~aL(x) =0    (a > 0).

The aim of this note is to show that L measurable implies that L is

locally bounded on some half line (A, co) (thus preparing for Feller's

exposition) and to give a short proof of (2) which avoids an appeal to

(1), by establishing the following theorem:

Theorem. // L is slowly varying and measurable, then for every a > 0,

there exists X(a) and T(a) such that x>X(a) and t> T(a) imply:

tr« ^ L(xl)/L(x) ^ P.

Proof. Let Sn= {t>l: tr«-g,L(xt)/L(x)^taVx>n}.

From slow variation it follows:

00

U Sn = {t:t> l}.
n-l
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1 The author is indebted to the referee for these references.
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Since L is measurable, there exists »o such that 5„0 has a positive

Lebesgue measure. Now SnSnESn, i.e. S„ is a multiplicative semi-

group. Hence the interior of 5„0 is not empty; this implies that S„0

contains a half-line (T(a), oo), and we can take X(a) =n0.

The idea of the proof can be used [5] to get uniform convergence

of L(xt)/L(x) on compact subsets of A+.
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