ON SLOW VARIATION
GERARD LETAC

A positive function L on the positive real line is said to be “slowly
varying at infinity” if, for each ¢>0:
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Karamata [3] has proved that if L is continuous, then

) L(x) = a(x) exp(j‘: e(Ty)dy>

where €(x)—0 and a(x)—cE (0, ©) as x—+ ». Feller [2, pp. 272-
274] gives a new exposition of the theory and a proof of (1), implic-
itly assuming not the continuity, but the local integrability of L on
some half line (4, «). But it has been already proved [1], [4]! that
measurability of L is enough.

From (1), it follows that [2, footnote p. 302]:
2) lim x2L(x) = o, lim x2L(x) =0 (a> 0).
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The aim of this note is to show that L measurable implies that L is
locally bounded on some half line (4, «) (thus preparing for Feller’'s
exposition) and to give a short proof of (2) which avoids an appeal to
(1), by establishing the following theorem:

THEOREM. If L is slowly varying and measurable, then for every a>0,
there exists X (o) and T'(a) such that x> X (o) and t> T (cr) imply:

= L(xt)/L(x) < t=
PROOF. Let S,= {t>1: - < L(xt)/L(x) St=Vx>n}.
From slow variation it follows:

US. = {t:t>1}.

n=1
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Since L is measurable, there exists no such that S,, has a positive
Lebesgue measure. Now S,S,C.S,, i.e. S, is a multiplicative semi-
group. Hence the interior of S,, is not empty; this implies that S,,
contains a half-line (T(a), ), and we can take X (a) = n,.

The idea of the proof can be used [5] to get uniform convergence
of L(xt)/L(x) on compact subsets of Rt.
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