A CLOSED SUBSPACE OF 9(2) WHICH IS
NOT AN LF-SPACE

M. J. KASCIC, JR. AND B, ROTH!

ABstracT. With proper choice of region QCR"® and constant
coefficient linear partial differential operator P, namely Q being
P-convex but not strong P-convex, the range of P in D(Q) is a closed
subspace of () whose subspace topology differs from its canon-
ical LF-topology. In the present paper this result is proved and an
example of a pair Q, P satisfying the above hypotheses is presented.

Dieudonné and Schwartz, in their pioneering work [1] on locally
convex spaces, raised a number of fundamental questions concerning
LF-spaces. X is an LF-space if X =UX, where {X,} is a strictly in-
creasing sequence of Fréchet spaces such that the canonical injection
of X, into X,1 is a homeomorphism for every n and X is equipped
with the finest locally convex topology making the canonical injection
of X, into X continuous for every n. One of the questions was:

If M is a closed subspace of X, is M an LF-space?

Grothendieck [2, p. 89] gave an ingenious example involving
Kothe spaces which answered this question (together with many
others) negatively. We here present another example of a closed
subspace of an LF-space which is not an LF-space. However, this
example involves the principal LF-spaces arising in the theory of
distributions, namely the class of spaces D(Q) where @ is an open
subset of R", and the subspace of D(Q) exhibiting the pathology is
the image of D(2) under a linear partial differential operator with
constant coefficients. We are indebted to Richard M. Aron for clari-
fying our results.

Hérmander proved [3, Theorems 3.63 and 3.64, pp. 85-87] that
P(D)D'(2) =D'(Q) if and only if Q is strongly P-convex. This power-
ful theorem provides the key to proving the following result.

THEOREM. IfQis P-convex, but not strongly P-convex, then P(— D) D(Q)
is a closed subspace of D(Q) whick is not an L F-space.
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ProOF. It is shown in Tréves [5, Theorem 5.1, p. 287] that if Q 1s
P-convex, then P(—D)D(Q) is a closed subspace of D(R). Now sup-
pose P(—D)D(Q) is an LF-space. By the open mapping theorem (see
Husain [4, p. 44]), P(—D):®(Q)—P(—D)D(Q) is a linear homeo-
morphism. Let TE®D'(Q). Then the linear form P(—D)f—T(f) is
continuous and hence by the Hahn Banach theorem can be extended
to a continuous linear functional S on D(Q). Since S(P(—D)f) =T(f)
for all fED(Q), we conclude that P(D)S=T. Therefore P(D)D'(Q)
=D'(Q), contradicting the fact that @ is not strongly P-convex.
Hence P(—D)D(Q) is not an LF-space.

For the sake of completeness, we explicitly provide an example of a
constant coefficient linear partial differential operator and an open
set in R? satisfying the hypothesis of the theorem.

EXAMPLE. Let Q= {xER%:¢(x)=x}—xj—25—1<0}, and P(D)
=D}4+Di—D2 Then Q and P satisfy the hypothesis of the theorem.
First, there are no points on bd() which are characteristic with
respect to P. The P-convexity of @ follows directly from a result of
Hoérmander [3, Theorem 3.74, p. 92]. However, Q fails to be strongly
P-convex because the normal curvature at the point (1, 0, 0) in the
tangential bicharacteristic direction (0, 1, 1) is negative (see Hor-
mander [3, Theorem 3.75, p. 93]).
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