METRIC DIMENSION OF COMPLETE METRIC SPACES!
GLENN A. BOOKHOUT

1. Introduction and results. For integers n=3, let (X,, p) be a
metric space such that

(i) X.C(Ka, p), a compact n-dimensional metric space;

(ii) X,=K,—U;Z, 4;, where the A's are mutually disjoint and
closed in K,; and

(iii) u dim(X,, p) = [#/2] and dim X,=n—1.
(Here u dim denotes metric dimension, which is defined in the next
section, and dim denotes covering dimension.) K. Sitnikov [8, p. 23]
and K. Nagami and J. H. Roberts [6, p. 426] have constructed such
spaces.

The result of the present paper is stated in the following theorem.

THEOREM. For integers n= 3, let (X ., p) be a metric space with prop-
erties (1)—(iii) above. Then there exists a complete metric ¢ on X,
equivalent to p such that

wdim(X,, o) < [n/2]4+1.

K. Nagami and J. H. Roberts posed the following question. Is
p dim(X, d) =dim X for all complete metric spaces (X, d)? In [1,
p.166] Richard E. Hodel posed an analogous question. Is d»(X, d)
=dim X for all complete metric spaces (X, d)? (The metric-de-
pendent dimension function ds is defined in the next section.) It is
known (see [6, Theorem 4, p. 422]) that dy(X, d) <p dim (X, d) for
all metric spaces (X, d). The present theorem gives a negative answer
to these questions, since for n=35,

p dim(X,, ¢) £ [n/2]4+1<n—1=dim X,.

M. Katétov [4, p. 166] proved that dim X <2 u dim(X, d) for all
nonempty metric spaces (X, d). In view of this result of Kat&tov and
the present theorem, the following problem is suggested.

ProBLEM. For integers 7= 3, do there exist complete metric spaces
(X ., d) with g dim(X,, d) = [#/2] and dim X,=n—1?
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2. Definitions. In this paper three metric-dependent dimension
functions are considered:

(i) metric dimension, denoted by u dim;

(ii) ds, introduced by K. Nagami and J. H. Roberts in [5, p. 602];
and

(iii) ds, introduced by Richard E. Hodel in [3, p. 83].

Metric dimension, ds, and ds are functions from the class of all metric
spaces (X, d) into {—1, 0,1,---; } Condensed definitions of
these functions restricted to nonempty metric spaces are as follows.

DEFINITION. u dim(X, d) is the smallest integer # such that for
all ¢>0 there exists an open cover U(e) of X with (1) order U(e)
=<n+1 and (2) mesh U(e) <e.

DEFINITION. dy(X, d) is the smallest integer # such that given
any n+1 pairs { C;, C! }Z‘.fll of closed sets with d(C;, C{) >0 for each 1,
there exist closed sets {B;}7X} such that

(1) B;separates C;and C! in X for each 7 and

(i) Nt B:=g.

DEFINITION. d5(X, d) is the smallest integer # such that given any
countable number of pairs { C;, C/ };2; of closed sets with d(C;, C{)2
for each 7 for some 6 >0, there exist closed sets {B;}f,l such that

(i) B; separates C; and C{ in X for each 7 and

(ii) order {Be}:.’.xén.

3. Proof of the theorem.

3.1. REDUCING THE PROBLEM. Fix an integer n=3. Let (X, p) be
a metric space with properties (i)—(iii) above. We may assume that
every A; is nonempty. Define

fi(x) = xEKa— 45,12 1);

P(x) At) ’
@) — )|
1+ | fuw) — f:(9) |
o(59) = o5, 3) + Dailz,3), (5 yE Xo).

t=1

ai(x,y) = 27% (%, y E K, — A5, i 2 1);

It is known (see [2, Theorem 2-76, p. 85]) that ¢ is a complete
metric on X, equivalent to p.

We shall prove that u dim(X,, ¢) <[n/2]+1. It is proved in [3,
p. 85] that ds(X, d) =p dim(X, d) for all separable metric spaces
(X, d). Now X, is separable, so it suffices to prove that ds(X,, o)
< [n/2]+1. Let {Ci, C! }i21 be a countable number of pairs of closed
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sets in X, with ¢(C;, C!/)=e€ for each ¢ for some ¢>0. We want to
show that there exist closed sets {B;};~, in X, such that

(i) B separates C; and C/ in X, for each ¢ and

(ii) order {B:}; < [n/2]+1.

Since Z;‘L] a; converges uniformly in X,, there exists an integer
N>1 such that Y ;x4 ai(x, ¥) <e/2 for all x, yEX,. Define

N
a¥(x, y) = p(x,y) + 2 ai(x, y), (x,vE X,

=1

Then clearly ¢¥ is a metric on X, equivalent to p. Also, since
a(C;, C!)=e for all 7, it follows that

€

(1) oV (C;, Cl) = ; for all 4.
3.2. DEFINITIONS. Define
8 = min{p(4;, 45): 4,5 € {1,2, - - -, N},i = j},

. {6 € €d? }
vy = min4—, —;, ———> .
4 6 24(N-1)

3.3. AsserTION 1. For all numbers a such that 0<a =6/4, there
existsan e(a) >0such that p(C;, C/ ) =+vin S(e(a)) (= {xEKn:a—e(a)
<p(x, A)<a+e(a)}) for i=1.

Proor. Fix a such that 0<a=6/4. Choose €(a)>0 such that
e(a) <min{a/2, ea?/48}. Suppose there exists an integer 1=1 such
that p(C;, C!)<+v in S(e(a)). Then there exist points x&C; and
yEC! such that {x, y} CS(e(a)) and p(x, y) <7. From the definition
of v and the choice of €(a), it follows that p(x, ¥) <6/4, p(x, 4)<38/8,
and p(y, 4)<35/8. Therefore by the definition of §, there exists an
integer kE{l, 2, -, N} such that p(x, Ax)<36/8 and p(y, 4x)
<35/8. Thus for i€ {1, 2, - - -, N} and ik, p(x, 4:)>8/2 and
o(y, 4;)>8/2. It follows that a —e(a) <p(x, Ax) <a-+e(a) and a—e(a)
<p(y, Ar)<a-+te(a). Hence Ip(x, Aw)—p(y, Ai)| <2e(a). Finally,
p(x, Ax)>a/2 and p(y, Ax)>a/2. From the definitions of ¥ and vy
and the inequalities above, it follows that
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N
V(2 9) S o 9) + 2 | fild) = £:0) ]

(x) Ai) - P(y, Al)l
p(x, Ai)‘P(}’, At)

N IP
ép(x,y)+ Z
=1

N P(x; 3’) l p(xy Ak) - P(y, Ak) I
< .
= ol 3) + »:=Zl p(x, 43 -p(y, 43) p(x, Ar)-p(y, 4i)
(N — 1)y  2ea)
<vt 82/4 a?/4

<e/6+ ¢/6+ ¢/6 =¢/2,

contradicting (1).

3.4. CoNSTRUCTION OF Cjj, Cj. Now (i) {S(e(a)):0<a=<5/4} is
a collection of open sets in K, covering {xEK,:0<p(x, A) <s/4}
and (ii) {xEK,,:5/(4-2") <p(x, 4) §5/(4-2f"’)} is compact for j=1.
Using (i) and (ii), it is easy to prove that there exist a sequence
{a;};2, of positive numbers <§/4 such that

(@) U, S(e(a;)) covers {xEK,:0<p(x, A)<8/4} and

(b) the sequence {a,-} j=1 converges to 0.

We can choose a sequence {§;},2, of distinct positive numbers such
that 6,=46/4, {6]‘} 71 is a strictly decreasing sequence converging to
0, and for each j = 2 there exists an integer 2 =1 such that

(2) ap — elar) < 841 < ;-1 < ar + e(ar).

Now we define distinct positive numbers {8;;};5.; as follows. Fix
jz 1. Define 8;;=20;. For 2>1 choose the 8.;'s to be distinct numbers
strictly between §; and §;,;.

Now define

Ea={x € X,: p(x, 4) Z 8a}, (G=1);
Eij={xEXa: 85 S p(x, 4) Sbijmaf, (G21,5>1);
Ci.’i = Cin Eij, Ci] = C:f\ E,‘j, (i,] g 1),

3.5. ASSERTION 2. There exists a 7>0 such that p(Cy;, C},) =7 for
1,j=1.

Proor. Define 7=min {'y, 683/4N} .

Case 1. j=1. Suppose there exists an integer =1 such that
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p(Ca, Ch)<7. Let x&Cit and y&E(C}; be such that p(x, y) <r. Note
that p(x, 4)> 8, and p(y, 4)> 8., since {x, y} CE;;. Hence
Y| px, 43) = oy, 47)]

¥(x, y) < ol 3) +
o¥(z, y) = p(x, y) E p(x, A3)-0(y, 43)

y P(x’ J’)
= p(x, )’) + Z
o1 p(w, 43)-p(y, 43)
<7+ NT/B:
<€/4+€/4 = 5/2)
a contradiction to (1).

Case 2. j>1. Fix 1=1 and 7> 1. Now by the definition of E;; and
by (2),

Ei C{x € Xat 841 = p(x, 4) < 81}
C S (e(a))

for some a such that 0<a =§/4. Therefore by the definitions of C;;
and C}; and Assertion 1, p(Cy;, Cj)Zv=7.

3.6. LEMMA [7]. Let X be a topological space, let C and C' be disjoint
closed sets in X, and let {Dj}f;o be an open cover of X such that Dy= &
and D;CDjy1 for all j=1. Suppose there exist closed sets {Bj};:l n X
such that B;CD;—Dj_; for j=1 and B; separates CN\(D;—D;_;) and
C'N\(D;j—D;j_1) in D;—D;_y for j= 1. Then there exists a closed set B
in X such that B separates C and C' in X and BCU;., (BAJ(D;—D;)).

3.7. CONCLUSION OF THE PROOF OF THE THEOREM. By Assertion 2
and the equality ds(X., p) =[n/2], there exist closed sets {B;,};}:l
in X, such that B}, separates C;; and Cj; in X, for 4, =1 and order
{By}5-1=[n/2]. For i=1 define Dy=¢. For i, j=1 define D;;
= {xEX,.:p(x, A) >5,‘j} and B,-,-=B{,ﬂ(5.~,~—D,-,j_1), where for
every 7and j the closure of D;;is taken with respect to X ,. Then clearly
Bij separates C; and C/ in D;;—D;,;_1for 4,721 and

3) order{ B;} %=1 < [n/2).

Now fix 1=1. Clearly Xa, Ci, C!, { D}, and { B}/, satisfy
the conditions of the lemma. Therefore there exists a closed set B;
in X, such that B; separates C;and C{ in X, and

B: C .U (Bi;\J (Ds; — Dyj)).

J=1
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But for j=1,
Dy — Di; C {2 € Xa: p(x, 4) = b6i5}.

Hence

B;C U (By\ {x € Xa: o(s, 4) = 8i}).

j=1

Therefore, by (3) and the fact that the §;;’s are distinct for 7,521,
we have that order {B;};2;=<[n/2]+1, and the proof is complete.
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