METRIC DIMENSION OF COMPLETE METRIC SPACES¹

GLENN A. BOOKHOUT

- 1. Introduction and results. For integers $n \ge 3$, let (X_n, ρ) be a metric space such that
 - (i) $X_n \subset (K_n, \rho)$, a compact *n*-dimensional metric space;
- (ii) $X_n = K_n \bigcup_{i=1}^{\infty} A_i$, where the A_i 's are mutually disjoint and closed in K_n ; and
 - (iii) $\mu \dim(X_n, \rho) = \lfloor n/2 \rfloor$ and dim $X_n = n-1$.

(Here μ dim denotes metric dimension, which is defined in the next section, and dim denotes covering dimension.) K. Sitnikov [8, p. 23] and K. Nagami and J. H. Roberts [6, p. 426] have constructed such spaces.

The result of the present paper is stated in the following theorem.

THEOREM. For integers $n \ge 3$, let (X_n, ρ) be a metric space with properties (i)-(iii) above. Then there exists a complete metric σ on X_n equivalent to ρ such that

$$\mu \dim(X_n, \sigma) \leq \lceil n/2 \rceil + 1.$$

K. Nagami and J. H. Roberts posed the following question. Is μ dim(X, d) = dim X for all complete metric spaces (X, d)? In [1, p.166] Richard E. Hodel posed an analogous question. Is $d_2(X, d)$ = dim X for all complete metric spaces (X, d)? (The metric-dependent dimension function d_2 is defined in the next section.) It is known (see [6, Theorem 4, p. 422]) that $d_2(X, d) \leq \mu$ dim (X, d) for all metric spaces (X, d). The present theorem gives a negative answer to these questions, since for $n \geq 5$,

$$\mu \dim(X_n, \sigma) \leq [n/2] + 1 < n-1 = \dim X_n.$$

M. Katětov [4, p. 166] proved that dim $X \le 2 \mu \dim(X, d)$ for all nonempty metric spaces (X, d). In view of this result of Katětov and the present theorem, the following problem is suggested.

PROBLEM. For integers $n \ge 3$, do there exist complete metric spaces (X_n, d) with $\mu \dim(X_n, d) = \lfloor n/2 \rfloor$ and dim $X_n = n-1$?

Received by the editors June 16, 1969.

¹ This research is part of a doctoral dissertation prepared at Duke University under the supervision of Professor J. H. Roberts and was supported in part by the National Science Foundation under grants GP-5222 and GP-5919.

- 2. **Definitions.** In this paper three metric-dependent dimension functions are considered:
 - (i) metric dimension, denoted by μ dim;
- (ii) d_2 , introduced by K. Nagami and J. H. Roberts in [5, p. 602]; and
- (iii) d_5 , introduced by Richard E. Hodel in [3, p. 83]. Metric dimension, d_2 , and d_5 are functions from the class of all metric spaces (X, d) into $\{-1, 0, 1, \cdots; \infty\}$. Condensed definitions of these functions restricted to nonempty metric spaces are as follows.

DEFINITION. μ dim(X, d) is the smallest integer n such that for all $\epsilon > 0$ there exists an open cover $\mathfrak{U}(\epsilon)$ of X with (1) order $\mathfrak{U}(\epsilon) \leq n+1$ and (2) mesh $\mathfrak{U}(\epsilon) < \epsilon$.

DEFINITION. $d_2(X, d)$ is the smallest integer n such that given any n+1 pairs $\{C_i, C_i'\}_{i=1}^{n+1}$ of closed sets with $d(C_i, C_i') > 0$ for each i, there exist closed sets $\{B_i\}_{i=1}^{n+1}$ such that

- (i) B_i separates C_i and C'_i in X for each i and
- (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$.

DEFINITION. $d_{\mathfrak{s}}(X, d)$ is the smallest integer n such that given any countable number of pairs $\{C_i, C_i'\}_{i=1}^{\infty}$ of closed sets with $d(C_i, C_i') \ge \delta$ for each i for some $\delta > 0$, there exist closed sets $\{B_i\}_{i=1}^{\infty}$ such that

- (i) B_i separates C_i and C'_i in X for each i and
- (ii) order $\{B_i\}_{i=1}^{\infty} \leq n$.

3. Proof of the theorem.

3.1. REDUCING THE PROBLEM. Fix an integer $n \ge 3$. Let (X_n, ρ) be a metric space with properties (i)-(iii) above. We may assume that every A_i is nonempty. Define

$$f_{i}(x) = \frac{1}{\rho(x, A_{i})}, \quad (x \in K_{n} - A_{i}, i \ge 1);$$

$$\alpha_{i}(x, y) = 2^{-i} \cdot \frac{|f_{i}(x) - f_{i}(y)|}{1 + |f_{i}(x) - f_{i}(y)|}, \quad (x, y \in K_{n} - A_{i}, i \ge 1);$$

$$\sigma(x, y) = \rho(x, y) + \sum_{i=1}^{\infty} \alpha_{i}(x, y), \quad (x, y \in X_{n}).$$

It is known (see [2, Theorem 2-76, p. 85]) that σ is a complete metric on X_n equivalent to ρ .

We shall prove that $\mu \dim(X_n, \sigma) \leq \lfloor n/2 \rfloor + 1$. It is proved in [3, p. 85] that $d_5(X, d) = \mu \dim(X, d)$ for all separable metric spaces (X, d). Now X_n is separable, so it suffices to prove that $d_5(X_n, \sigma) \leq \lfloor n/2 \rfloor + 1$. Let $\{C_i, C_i'\}_{i=1}^{\infty}$ be a countable number of pairs of closed

sets in X_n with $\sigma(C_i, C_i') \ge \epsilon$ for each i for some $\epsilon > 0$. We want to show that there exist closed sets $\{B_i\}_{i=1}^{\infty}$ in X_n such that

- (i) B_i separates C_i and C'_i in X_n for each i and

(ii) order $\{B_i\}_{i=1}^{\infty} \leq [n/2] + 1$. Since $\sum_{i=1}^{\infty} \alpha_i$ converges uniformly in X_n , there exists an integer N>1 such that $\sum_{i=N+1}^{\infty} \alpha_i(x, y) < \epsilon/2$ for all $x, y \in X_n$. Define

$$\sigma^{N}(x, y) = \rho(x, y) + \sum_{i=1}^{N} \alpha_{i}(x, y), \qquad (x, y \in X_{n}).$$

$$A = \bigcup_{i=1}^{N} A_{i}.$$

Then clearly σ^N is a metric on X_n equivalent to ρ . Also, since $\sigma(C_i, C'_i) \ge \epsilon$ for all i, it follows that

(1)
$$\sigma^{N}(C_{i}, C'_{i}) \geq \frac{\epsilon}{2} \quad \text{for all } i.$$

3.2. Definitions. Define

$$\delta = \min \{ \rho(A_i, A_j) : i, j \in \{1, 2, \dots, N\}, i \neq j \},$$

$$\gamma = \min \left\{ \frac{\delta}{4}, \frac{\epsilon}{6}, \frac{\epsilon \delta^2}{24(N-1)} \right\}.$$

3.3. Assertion 1. For all numbers a such that $0 < a \le \delta/4$, there exists an $\epsilon(a) > 0$ such that $\rho(C_i, C_i') \ge \gamma$ in $S(\epsilon(a))$ ($\equiv \{x \in K_n : a - \epsilon(a)\}$ $\langle \rho(x, A) \langle a + \epsilon(a) \rangle$ for $i \ge 1$.

PROOF. Fix a such that $0 < a \le \delta/4$. Choose $\epsilon(a) > 0$ such that $\epsilon(a) < \min\{a/2, \epsilon a^2/48\}$. Suppose there exists an integer $i \ge 1$ such that $\rho(C_i, C_i') < \gamma$ in $S(\epsilon(a))$. Then there exist points $x \in C_i$ and $y \in C'_i$ such that $\{x, y\} \subset S(\epsilon(a))$ and $\rho(x, y) < \gamma$. From the definition of γ and the choice of $\epsilon(a)$, it follows that $\rho(x, y) < \delta/4$, $\rho(x, A) < 3\delta/8$, and $\rho(y, A) < 3\delta/8$. Therefore by the definition of δ , there exists an integer $k \in \{1, 2, \dots, N\}$ such that $\rho(x, A_k) < 3\delta/8$ and $\rho(y, A_k)$ $<3\delta/8$. Thus for $i \in \{1, 2, \cdots, N\}$ and $i \neq k$, $\rho(x, A_i) > \delta/2$ and $\rho(y, A_i) > \delta/2$. It follows that $a - \epsilon(a) < \rho(x, A_k) < a + \epsilon(a)$ and $a - \epsilon(a)$ $<\rho(y, A_k)< a+\epsilon(a)$. Hence $|\rho(x, A_k)-\rho(y, A_k)|< 2\epsilon(a)$. Finally, $\rho(x, A_k) > a/2$ and $\rho(y, A_k) > a/2$. From the definitions of σ^N and γ and the inequalities above, it follows that

$$\sigma^{N}(x, y) \leq \rho(x, y) + \sum_{i=1}^{N} |f_{i}(x) - f_{i}(y)|
\leq \rho(x, y) + \sum_{i=1}^{N} \frac{|\rho(x, A_{i}) - \rho(y, A_{i})|}{\rho(x, A_{i}) \cdot \rho(y, A_{i})}
\leq \rho(x, y) + \sum_{i=1}^{N} \frac{\rho(x, y)}{\rho(x, A_{i}) \cdot \rho(y, A_{i})} + \frac{|\rho(x, A_{k}) - \rho(y, A_{k})|}{\rho(x, A_{k}) \cdot \rho(y, A_{k})}
< \gamma + \frac{(N - 1)\gamma}{\delta^{2}/4} + \frac{2\epsilon(a)}{a^{2}/4}
< \epsilon/6 + \epsilon/6 + \epsilon/6 = \epsilon/2,$$

contradicting (1).

3.4. Construction of C_{ij} , C'_{ij} . Now (i) $\{S(\epsilon(a)): 0 < a \le \delta/4\}$ is a collection of open sets in K_n covering $\{x \in K_n: 0 < \rho(x, A) \le \delta/4\}$ and (ii) $\{x \in K_n: \delta/(4 \cdot 2^j) \le \rho(x, A) \le \delta/(4 \cdot 2^{j-1})\}$ is compact for $j \ge 1$. Using (i) and (ii), it is easy to prove that there exist a sequence $\{a_j\}_{j=1}^{\infty}$ of positive numbers $\le \delta/4$ such that

(a) $\bigcup_{j=1}^{\infty} S(\epsilon(a_j))$ covers $\{x \in K_n : 0 < \rho(x, A) \le \delta/4\}$ and

(b) the sequence $\{a_j\}_{j=1}^{\infty}$ converges to 0.

We can choose a sequence $\{\delta_j\}_{j=1}^{\infty}$ of distinct positive numbers such that $\delta_1 = \delta/4$, $\{\delta_j\}_{j=1}^{\infty}$ is a strictly decreasing sequence converging to 0, and for each $j \ge 2$ there exists an integer $k \ge 1$ such that

$$(2) a_k - \epsilon(a_k) < \delta_{j+1} < \delta_{j-1} < a_k + \epsilon(a_k).$$

Now we define distinct positive numbers $\{\delta_{ij}\}_{i,j=1}^{\infty}$ as follows. Fix $j \ge 1$. Define $\delta_{1j} = \delta_j$. For i > 1 choose the δ_{ij} 's to be distinct numbers strictly between δ_i and δ_{i+1} .

Now define

$$E_{i1} = \{x \in X_n : \rho(x, A) \ge \delta_{i1}\}, \quad (i \ge 1);$$

$$E_{ij} = \{x \in X_n : \delta_{ij} \le \rho(x, A) \le \delta_{i,j-1}\}, \quad (i \ge 1, j > 1);$$

$$C_{ij} = C_i \cap E_{ij}, \quad C'_{ij} = C'_i \cap E_{ij}, \quad (i, j \ge 1).$$

3.5. Assertion 2. There exists a $\tau > 0$ such that $\rho(C_{ij}, C'_{ij}) \ge \tau$ for $i, j \ge 1$.

PROOF. Define $\tau = \min \{ \gamma, \epsilon \delta_2^2 / 4N \}$.

Case 1. j=1. Suppose there exists an integer $i \ge 1$ such that

 $\rho(C_{i1}, C'_{i1}) < \tau$. Let $x \in C_{i1}$ and $y \in C'_{i1}$ be such that $\rho(x, y) < \tau$. Note that $\rho(x, A) > \delta_2$ and $\rho(y, A) > \delta_2$, since $\{x, y\} \subset E_{i1}$. Hence

$$\sigma^{N}(x, y) \leq \rho(x, y) + \sum_{i=1}^{N} \frac{\left| \rho(x, A_{i}) - \rho(y, A_{i}) \right|}{\rho(x, A_{i}) \cdot \rho(y, A_{i})}$$

$$\leq \rho(x, y) + \sum_{i=1}^{N} \frac{\rho(x, y)}{\rho(x, A_{i}) \cdot \rho(y, A_{i})}$$

$$< \tau + N\tau/\delta_{2}^{2}$$

$$< \epsilon/4 + \epsilon/4 = \epsilon/2,$$

a contradiction to (1).

Case 2. j>1. Fix $i \ge 1$ and j>1. Now by the definition of E_{ij} and by (2),

$$E_{ij} \subset \left\{ x \in X_n \colon \delta_{j+1} \leq \rho(x, A) \leq \delta_{j-1} \right\}$$

$$\subset S\left(\epsilon(a) \right)$$

for some a such that $0 < a \le \delta/4$. Therefore by the definitions of C_{ij} and C'_{ij} and Assertion 1, $\rho(C_{ij}, C'_{ij}) \ge \gamma \ge \tau$.

- 3.6. Lemma [7]. Let X be a topological space, let C and C' be disjoint closed sets in X, and let $\{D_j\}_{j=0}^{\infty}$ be an open cover of X such that $D_0 = \emptyset$ and $\overline{D}_j \subset D_{j+1}$ for all $j \geq 1$. Suppose there exist closed sets $\{B_j\}_{j=1}^{\infty}$ in X such that $B_j \subset \overline{D}_j D_{j-1}$ for $j \geq 1$ and B_j separates $C \cap (\overline{D}_j D_{j-1})$ and $C' \cap (\overline{D}_j D_{j-1})$ in $\overline{D}_j D_{j-1}$ for $j \geq 1$. Then there exists a closed set B in X such that B separates C and C' in X and $B \subset \bigcup_{j=1}^{\infty} (B_j \cup (\overline{D}_j D_j))$.
- 3.7. Conclusion of the proof of the theorem. By Assertion 2 and the equality $d_{\delta}(X_n, \rho) = [n/2]$, there exist closed sets $\{B'_{ij}\}_{i,j=1}^{\infty}$ in X_n such that B'_{ij} separates C_{ij} and C'_{ij} in X_n for $i, j \ge 1$ and order $\{B'_{ij}\}_{i,j=1}^{\infty} \le [n/2]$. For $i \ge 1$ define $D_{i0} = \emptyset$. For $i, j \ge 1$ define $D_{ij} = \{x \in X_n : \rho(x, A) > \delta_{ij}\}$ and $B_{ij} = B'_{ij} \cap (\overline{D}_{ij} D_{i,j-1})$, where for every i and j the closure of D_{ij} is taken with respect to X_n . Then clearly B_{ij} separates C_i and C'_i in $\overline{D}_{ij} D_{i,j-1}$ for $i, j \ge 1$ and

(3)
$$\operatorname{order} \left\{ B_{ij} \right\}_{i,j=1}^{\infty} \leq [n/2].$$

Now fix $i \ge 1$. Clearly X_n , C_i , $\{C_i', \{D_{ij}\}_{j=0}^{\infty}, \text{ and } \{B_{ij}\}_{j=1}^{\infty} \text{ satisfy}$ the conditions of the lemma. Therefore there exists a closed set B_i in X_n such that B_i separates C_i and C_i' in X_n and

$$B_{i} \subset \bigcup_{j=1}^{\infty} (B_{ij} \cup (\overline{D}_{ij} - D_{ij})).$$

But for $j \ge 1$,

$$\overline{D}_{ij} - D_{ij} \subset \{x \in X_n : \rho(x, A) = \delta_{ij}\}.$$

Hence

$$B_{i} \subset \bigcup_{j=1}^{\infty} (B_{ij} \cup \{x \in X_{n}: \rho(x, A) = \delta_{ij}\}).$$

Therefore, by (3) and the fact that the δ_{ij} 's are distinct for $i,j \ge 1$, we have that order $\{B_i\}_{i=1}^{\infty} \le [n/2] + 1$, and the proof is complete.

REFERENCES

- 1. E. E. Grace (editor), Topology conference, Arizona State University, Tempe, Ariz., 1968. MR 38 #5152.
- 2. John G. Hocking and Gail S. Young, *Topology*, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857.
- 3. Richard E. Hodel, Note on metric-dependent dimension functions, Fund. Math. 61 (1967), 83-89. MR 36 #3326.
- 4. M. Katětov, On the relation between metric and topological dimensions, Czechoslovak Math. J. 8 (83) (1958), 163-166. (Russian) MR 21 #3830.
- 5. K. Nagami and J. H. Roberts, Metric-dependent dimension functions, Proc. Amer. Math. Soc. 16 (1965), 601-604. MR 33 #3264.
- 6. ——, A study of metric-dependent dimension functions, Trans. Amer. Math. Soc. 129 (1967), 414-435. MR 35 #6131.
- 7. J. H. Roberts, Dimension function d_2 and covering dimension, Duke Math. J. (to appear).
- 8. K. Sitnikov, Example of a two-dimensional set in three-dimensional Euclidean space allowing arbitrarily small deformations into a one-dimensional polyhedron and a certain new characteristic of the dimension of sets in Euclidean spaces, Dokl. Akad. Nauk SSSR 88 (1953), 21–24. (Russian) MR 14, 894.

DUKE UNIVERSITY