A FIVE SPHERE DECOMPOSITION OF E^{2n-1}

DAVID GILLMAN1

- I. Introduction. R. H. Bing and M. L. Curtis have exhibited a decomposition of Euclidean 3-dimensional space E³ into twelve mutually disjoint circles and points not on the circles such that the associated decomposition space can not be embedded in E^4 [1]. Their method consists in showing that the space contains a certain 2-dimensional polyhedron that Flores has proved to be impossible to embed in E^{4} [2]. The construction of Bing and Curtis was later modified by R. H. Rosen, who, by improving the result of Flores, also exhibited a decomposition of E^3 that can not be embedded in E^4 , and in which he used only six circles instead of twelve [4]. In the opposite direction, R. P. Goblirsch showed that every decomposition using only three circles as nondegenerate elements can be embedded in E^4 [3]. Thus, for the numbers four and five the question remained open. Rosen conjectured in [4] that one could build an example by using five circles in E³ such that each circle links exactly two others. In this paper we show this conjecture to be correct. Moreover, our argument begins in a lower dimension: We construct an analogous decomposition of S^1 with five nontrivial elements such that the associated decomposition space can not be embedded in S^2 . The example conjectured by Rosen then becomes the second step in an induction argument. Thus we show that for each integer $n, n \ge 1$, there exists a decomposition of S^{2n-1} with nondegenerate elements consisting of five (n-1)-spheres such that the associated decomposition space can not be embedded in S^{2n} . This inductive viewpoint was inspired by a paper of Joseph Zaks [5], in which decompositions of E^{2n-1} with finitely many nondegenerate elements were constructed for all $n \ge 1$.
- II. Embedding an n-complex in S^{2n-1} . Let N^1 denote the 1-skeleton of a 4-simplex with vertices a_1 , b_1 , c_1 , d_1 , and e_1 . Let N^2 denote the join $V(N^1, \{a_2, b_2, c_2\})$ of N^1 with the three point space $\{a_2, b_2, c_2\}$. Proceeding inductively, N^n is defined as $V(N^{n-1}, \{a_n, b_n, c_n\})$. It is shown in [2] and [4] that N^n can not be embedded in E^{2n} . We name five n-simplices of N^n :

Received by the editors April 22, 1969.

¹ The preparation of this paper was sponsored in part by NSF Grant GP-6530.

$$D_1 = a_1c_1c_2c_3 \cdot \cdot \cdot \cdot c_{n-1}c_n$$

$$D_2 = a_1d_1c_2c_3 \cdot \cdot \cdot \cdot c_{n-1}c_n$$

$$D_3 = b_1d_1a_2a_3 \cdot \cdot \cdot \cdot a_{n-1}a_n$$

$$D_4 = b_1e_1a_2a_3 \cdot \cdot \cdot \cdot a_{n-1}a_n$$

$$D_5 = c_1e_1b_2b_3 \cdot \cdot \cdot \cdot b_{n-1}b_n$$

Setting $N_{-}^{n} = N^{n} - \sum_{1}^{5}$ Int D_{i} , we find that N_{-}^{n} embeds in S^{2n} . In fact, it embeds in S^{2n-1} ! Rather than prove this fact, which would require cumbersome notation, we establish a weaker result, which suffices for our purposes. We call two points of a geometric complex *distant* if they lie in disjoint, closed simplexes of the complex.

LEMMA. For $n \ge 1$, there exists a map $f_n: N^n \longrightarrow S^{2n-1}$ such that no two distant points of N^n have the same image.

FIGURE 1

PROOF. An induction argument begins with the fact that N^1 is homeomorphic to S^1 as is shown in Figure 1; call such a homeomorphism f_1 . For n=2, the reader is advised first to familiarize himself

LEGEND: $f_2(q,c,q_2)$ $f_2(q,d,a_2)$ $f_2(a,c,a_2) \cdot f_2(a,d,a_1)$ $f(e_i)$ f(d,) C, $f(b_i)$

FIGURE 2

with the visualizations given in [1]. In fact, for n=2, Bing and Curtis construct geometrically just what we will do notationally, except that their complex "lacks" three 2-cells instead of the five 2-cells that N_-^2 "lacks." We regard S_-^3 as the join $V(S_-^1, S_-^1)$, with f_1 viewed as an embedding of N_-^1 into the first factor of $V(S_-^1, S_-^1)$, and with $\{a_2, b_2, c_2\}$ viewed as a subset of the second factor. Then $V(f_1(N_-^1), \{a_2, b_2, c_2\})$ is a subset of $V(S_-^1, S_-^1)$ in a natural way; this provides us with an embedding f_2 of all but ten 2-simplices of N_-^2 into S_-^3 . We select points p, q, and r in the second factor of $V(S_-^1, S_-^1)$ so that this factor is composed of the six arcs a_2p , pb_2 , b_2q , qc_2 , c_2r , ra_2 . We define $f_2(a_1c_1)$ as $V(f_1(\text{Bd}\ a_1c_1), p)$, $f_2(a_1c_1a_2)$ as $V(f_1(\text{Bd}\ a_1c_1), a_2p)$ as illustrated in

FIGURE 3

Figure 2, and $f_2(a_1c_1b_2)$ as $V(f_1(\text{Bd }a_1c_1), pb_2)$. Next, we define $f_2(a_1d_1)$ as $V(f_1(\text{Bd }a_1d_1), p)$, $f_2(a_1d_1a_2)$ as $V(f_1(\text{Bd }a_1d_1), a_2p)$ as illustrated in Figure 2, and $f_2(a_1d_1b_2)$ as $V(f_1(\text{Bd }a_1d_1), pb_2)$. Similarly, we define $f_2(b_1d_1)$ as $V(f_1(\text{Bd }b_1d_1), q)$ and insert $f_2(b_1d_1b_2)$ and $f_2(b_1d_1c_2)$, $f_2(b_1e_1)$ as $V(f_1(\text{Bd }b_1e_1), q)$ and insert $f_2(b_1e_1b_2)$ and $f_2(b_1e_1c_2)$. Lastly, we define $f_2(c_1e_1)$ as $V(f_1(\text{Bd }c_1e_1), r)$, then insert $f_2(c_1e_1c_2)$ and $f_2(c_1e_1a_2)$. Thus f_2 has been defined, and one may verify that it satisfies the lemma; in fact, a small adjustment would make f_2 an embedding.

For n=3, we let f_2 map into the first factor of $V(S^3, S^1)$, and $a_3, p', b_3, q', c_3, r'$ be consecutive points in the second factor. Then $f_3(a_1c_1c_2)$ is defined as $V(f_2(\text{Bd } a_1c_1c_2), p')$; then $f_3(a_1c_1c_2a_3)$ and $f_3(a_1c_1c_2b_3)$ are inserted as before. The continuation is just a notational exercise.

III. Insertion of five annuli.

THEOREM. For each integer n, $n \ge 1$, there exists a decomposition of S^{2n-1} with nondegenerate elements consisting of five (n-1)-spheres such that the associated decomposition space can not be embedded in S^{2n} .

PROOF. Let A' denote the subarc of S^1 with interior point $f_1(a_1)$

and end points $f_1(e_1)+f_1(b_1)$; similarly B' has interior point $f_1(b_1)$ and end points $f_1(a_1)+f_1(c_1)$; analogously we define C', D', and E'. We set $A=V(A',\ S^{2n-3})\subset S^{2n-1}$, and similarly for B, C, D, and E. The map $f_n\colon N^n_-\to S^{2n-1}$ can be extended to N^n so that $f_n(\operatorname{Int}\ D_1)\subset \operatorname{Int}\ B$, $f_n(\operatorname{Int}\ D_2)\subset \operatorname{Int}\ E$, $f_n(\operatorname{Int}\ D_3)\subset \operatorname{Int}\ C$, $f_n(\operatorname{Int}\ D_4)\subset \operatorname{Int}\ A$, and $f_n(\operatorname{Int}\ D_5)\subset D$, with $f_n/\operatorname{Int}\ D_i$ an embedding for all i. We discard an open disk \emptyset_i from $f_n(\operatorname{Int}\ D_i)$, leaving an annulus U_i with boundary consisting of $\alpha_i=\operatorname{Bd}\ f_n(D_i)$ plus another n-sphere which we call β_i . By choosing \emptyset_i sufficiently large, we may ensure that

$$U_1 \cdot U_3 = U_1 \cdot U_4 = U_2 \cdot U_4 = U_2 \cdot U_5 = U_3 \cdot U_5 = \emptyset$$

as the corresponding α_i 's are disjoint. In fact, for all other pairs $U_i \cdot U_j$ with $i \neq j$, this intersection will be precisely $\alpha_i \cdot \alpha_j$. For example, to see that $U_1 \cdot U_2 = \alpha_1 \cdot \alpha_2$, observe that $U_1 - \alpha_1 \subset \text{Int } B$, $U_2 - \alpha_2 \subset \text{Int } E$, and Int $B \cdot \text{Int } E = \emptyset$.

We wish to show that the decomposition of S^{2n-1} with nondegenerate elements $\beta_1, \beta_2, \cdots, \beta_5$ does not embed in S^{2n} . We show that this would imply a map of N^n into S^{2n} such that no two distant points of N^n have the same image, contradicting [4]. All that needs to be checked is how the annuli $U_i - \alpha_i$ intersect N^n in S^{2n-1} . We already know that they do not intersect each other. Furthermore, it is easy to require that $U_i - \alpha_i$ intersects a simplex Δ of N^n only if they share a common vertex, by increasing the size of \mathcal{O}_i if necessary. It remains to show that if $\beta_1 \cdot \Delta_1 \neq \emptyset$ and $\beta_i \cdot \Delta_2 \neq \emptyset$, then Δ_1 and Δ_2 have a common vertex. For notational convenience, assume that i=1, so $\beta_1 \subset \operatorname{Int} B$. By general position, we may assume that Δ_1 and Δ_2 are both n-simplices on N^n . But any two n-simplices in $\operatorname{Int} B$ have b_1 as a common vertex.

IV. Questions. Let us first observe that our result is the best possible for n=1; any decomposition of S^1 with four (or less) non-degenerate elements can be embedded in S^2 without great difficulty. For $n \ge 2$, however, unsolved problems abound. For example, by using methods of Goblirsch [3], one can embed all four circle decompositions of S^3 in S^4 with one exception, illustrated in Figure 3. Can this example also be embedded in S^4 ? Note that care must be taken in this example that the four circles do not lie on a common torus in S^3 ; that is, these four circles do not all link each other in the most natural way. Indeed, if they did, the technique of [3] would give an embedding.

If we do not require circles but merely simple closed curves, then

FIGURE 4

Figure 4 gives a decomposition of S^3 with only three nondegenerate sets. Can this example be embedded in S^4 ? Note that Goblirsch's technique can not be applied to this example. Indeed, this question is unsolved if we do not require simple closed curves, but merely continuua.

If K is an n-complex which locally embeds in S^{2n-1} , does K embed in S^{2n} ?

REFERENCES

- 1. R. H. Bing and M. L. Curtis, Imbedding decompositions of E⁴ in E⁴, Proc. Amer. Math. Soc. 11 (1960), 149-155. MR 22 #8468.
- 2. E. Valle Flores, Ueber n-dimensionale Komplexe, die im R_{2n+1} absolut selbst-verschlungen sind, Ergebnisse eines Mathematischen Kolloquiums 6 (1933/34), 4-6.
- 3. R. P. Goblirsch, On decompositions of 3-space by linkages, Proc. Amer. Math. Soc. 10 (1959), 728-730. MR 22 #2985.
- 4. R. H. Rosen, Decomposing 3-space into circles and points, Proc. Amer. Math. Soc. 11 (1960), 918-928. MR 22 #11361.
- 5. J. Zaks, On finite decompositions of E^{2n-1} , Proc. Amer. Math. Soc. 20 (1969), 445-449.

University of California, Los Angeles