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CUP PRODUCT IN PROJECTIVE SPACES

KEE YUEN LAM

Abstract. Cup product in projective spaces is computed by an

elementary method.

In two recent algebraic topology texts, [l], [2], the additive

cohomology structures of projective spaces are obtained by elemen-

tary methods, while cup product is computed by techniques such as

the Gysin sequence and the Poincare duality theorem. We present a

computation using basic properties of cup product only.

Think of CP" as the space of all nonzero complex-coefficient poly-

nomials of the form P = a0+otiZ + • • • +<xnzn under identifications

P^\P for any nonzero complex number X. Let M = CP1X ■ • • X CP1

in factors). The multiplication of polynomials defines a map h'.M

-^CP". If Di, ■ ■ ■ , D„ are mutually disjoint discs in CP1, and D

= 7?iX • ■ ■ XD„EM, then by the fundamental theorem of algebra,

h is a homeomorphism of D onto h(D), and K = h~1QiiD)) is the dis-

joint union of all DK=DTmX • • • X 7>I(n), with 7r ranging through

all permutations of {1, 2, • ■ ■ , n}. Note that, if each (7)T, dDr) is

oriented coherently with M, then 7r:(F>, dD)—>(7>r, dDT) preserves

orientation.

Using the direct sum decomposition

772n(M, M - K) = @THiniM, M - DT),

and standard excision arguments, it is not hard to see that ^*:772n(il7)

—>772„iCP"), which is the following composite homomorphism

772n(il7) -> HiniM, M - K)h-^ 772n(CP», CP" - h{D)) Z- 772a(CP"),

is multiplication by +»!
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Let w denote the generator of H2(CP"). Then

**(«) =   E 1 X • • • X   o   X • • • X 1 <E H2(M);
»=1 (ith)

h*(o>»)   =   (Y,l   X ■   X CO  X   ■   ■   ■   X   l\    =  «!(c0 X        •   •   X CO).

It  follows  that a" generates  H2n(CPn).   Consequently  H*(CPn)

= Z[u]/u"+1 as ring.

The ring structure for H*(HPn) follows from naturality via the

Hopf fibration CP2n+1—>HPn. By the same technique, it also follows

that the 2-dim generator of H*(RPa, Z2) generates a polynomial

subring. Finally, it is easy to show [2, p. 151, (24.17)] that if

xEH^RP™, Z2) is the 1-dim generator, then x2^0 in RP2. Conse-

quently H*(RPm, Z2)=Z2[x] as ring.
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