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Abstract. The purpose of this paper is to point out that the

techniques of J. P. Kahane to arrive at almost everywhere diver-

gent Fourier series may be carried over to the Fourier-Walsh sys-

tem. In particular we construct a random Ll function whose

Fourier-Walsh series almost surely (a. s.) diverges almost every-

where.

1. As an application of his theorem on operations of weak type

E. M. Stein [4] has proven the existence of a L1 function whose

Fourier-Walsh series is divergent almost everywhere. Recently

Billard [l] has shown in direct analogy with Fourier series that the

Fourier-Walsh series of L2 functions are a. e. convergent. Our refer-

ence for Fourier-Walsh series is the paper of Fine [2].

Following Kahane [3, pp. 97-114], we begin with a sequence of

positive numbers mu m2, ■ ■ ■ , m,, ■ ■ ■ such that zZmi < °° and

form the random measure zZm&j —dp. where {dj} is an independent

sequence of random points equidistributed on [0, l], and 5^. is the

unit point mass measure at dj. It turns out, just as with Fourier-

Stieltjes series of dp, that the Fourier-Walsh-Stieltjes series of dp is

a. s. bounded at almost every point if zZm> log(l/»»,•) < °° ano< ls a- s-

not bounded at almost every point if zZmi l°s(l/mi) ~ °° •

2. Random measures. We shall write S(t; dp) for the Fourier-

Walsh-Stieltjes series of dp and Sn(t; dp) for the partial sums. Let

Dn(t) = Z"=o ti(t) be the Dirichlet kernel in the Walsh system {^-},

then S„(t; dp) = zZi°-imiTJn(t+6j). (Addition of reals is dyadic, cf.
[2].) For convenience we shall write D(k, 6) for D2h(6). We shall need

the following facts: ^2" =<£„, the rath Rademacher function; \pr(0) -^,(0)

=\j/T+>(6) provided r and 5 have dyadic expansions with no common

exponents; and finally D(k, 0) = 2* on [0, 2~*) and is 0 on [2"*, l].

Theorem 1. // zZmi<a> and zZmi log(l/m,-)<« ^era a. s.

S(t; dp) is bounded almost everywhere.

Proof. Since for every t, t+8j and 6j have the same distribution
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the series S(t; dp) and 5(0; dp) are similar. As in [3, p. 99], the

hypotheses imply that £(»»y/0y)< <» a. s. Also |F>*(0)| ^2/0 for

O<0<1 and all k [2, p. 391], and the proof is complete.

For the converse we need the following elementary lemma whose

proof is omitted.

Lemma. Let 0i, • • •, 0„ be independent random variables equidistrib-

uted on [0, 1 ] and letei, ■ ■ ■, e„ be an arbitrary assignment of signs, then

for every integer N there is a. s. an n0>N such that </>„o(0<) = u for

l^iSv.

Theorem 2. 7/ ^] m,<» and 53 mi log(1/»»,■) = oo then a. s.

sup„ Sn(t; dp) — oo almost everywhere.

Proof. As in [3] the hypotheses imply that a. s. yi(m,/0,-) = oo.

That for each v and n p(X)yl,+ i ntjDn(f)j) ^0) — 1/2 is an immediate

consequence of the fact that if m = 1 ypm(0) is a symmetric random

variable. To see this suppose ^m=0mi • • • <pmk where mi>mi> • • •

>mk. Then

MB + 2-c*+») = cbmi(e + 2-<»*+i>) . . . ^(0 _|_ 2-C*fD)

= <t>mi(6) ■ ■ ■ 4>mk-l(d)<t>mk(e+2-(»«+»)

= -*.,(«) • • ■*■*(«) = -Mo).

Thus by the zero-one law it suffices to show that

o / l\s v    m-
sup£myZ>B(0y)£(-)2:-!

n    j-1 \ 2 / ,=i   0y

a. s. for each v.

If wo>«i> • ■ • >», wehave

T>w = 7)(m0) + <Pn„D(ni) + <pn0(pniD(ni) + ■ ■ ■ <pnt<Pm ■ ■ ■ *»,_l7>(»«)

where w = 2"°-|-2ni-|- • ■ ■ +2n".

Almost surely none of 0i, • • • , 0t are dyadic rationals. Assume they

are contained in U?=1A< where A,= {0| 2~n'~1 <6<2~n'} where nt

= wi — 2(i — 1), * = 1, 2, • • • , g. Now by the lemma we may a. s.

choose «0>Wi such that0„o(0;) = 1 if 0,£Ai and <£„„<£„, (0.) = 1 if 0<£A2

and   • • • 0„o0„, ■ • • (pnq_i(0i) = 1 if 0,£A,.

Now if 0*£A,- we have thatZ>„(04)>2N-££V2y=2"*-1+l. Also

1/0*<2"« so that l/23ek<2ni-1<D„(dk). Hence a. s.

* / 1 \3*   m-
ZmyT^y) =   (_)£-i,
j=l \ 2 / y=i     0y

and the proof is complete.
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Remark. Contrary to the situation with Fourier-Stieltjes series,

it is false here that a. s. sup„eA Sn(t; dp) = m a. e. for A an infinite set

of positive integers. For example if A= {2n} then 52"(0; dp)

= zZimjD(n, dj) is a. s. bounded. To see this let Ej = the event

6j(£[2->, 1] then Zp(-e;)<00i so by the Borel-Cantelli lemma

0;£[2~', l] for all but finitely many j with probability 1. Thus

a. s. supn S2n(0; dp,) < «> and hence a. s. sup„ S2n(t; dp) < °° a. e. (The

referee has kindly pointed out that this is also a consequence of the

classical fact that the partial sums S2n(t; dp) are bounded in Ll(0, 1).)

3. A random L1 function with divergent Walsh series. In this sec-

tion we assume Zwj<°° an<^ zZmi log(l/w,-) = °°. Since a. s.

limn sup Sn(0; dp) = °o, a positive sequence {an}, an\0, may be

found such that a.s. lim„ sup anSn(0; dp) = co and hence such that

a. s. lim„ sup anSn(t; dp)—^o a. e. Furthermore choose a0 = ai,

a2"+k = a2n for 0:£&<2n and ra=l, 2, • • • .

Now define the positive L1 function /(/) = Z^-o (a2n-i — a2n)D(n, t).

Since ||Z)(w)||i = 1 it follows that the series is absolutely L ^convergent.

The jth Walsh coefficient of / is }(j) = zZ?>>■ (a2n-i — a2n)D(n, j)
= a2m-i = aj where 2ra_1 ^j < 2m.

We now form the random L1 function/ * dp(t) = zZf=i mif(t+8j)

and note that S„(t; f * dp) =a„Sn(t; dp)+zZm-oCm(am — an)^/m(t)

where Cm denotes the mth Fourier-Walsh-Stieltjes coefficient of dp.

The last term is/„ * dp where/„= Zm-o (am—an)^m. To see that

/„ is positive set bk = ak—an and note that/„ has the form

2r-l r-l

Z h^k = b0D(l) + Z b,k(T>(k + 1) - D(k))
k=0 h=l

=   Z V>*-i ~ b^)D(k) + Kr-iD(r) ̂  0.
k=l

Thus we see that Sn(t; f * dp)^anSn(t; dp) and it follows that

a.s. sup„ Sn(t;f * dp) = °° a.e.
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