MARKOV PROCESS REPRESENTATIONS OF GENERAL STOCHASTIC PROCESSES

DUDLEY PAUL JOHNSON

ABSTRACT. In this paper we show that any separable stochastic process on a compact metric space can be derived from a temporally homogeneous Markov process on the extreme points of a compact convex set of measures.

Let \mathfrak{X} be a compact metric space with Borel field Σ . Let T be either the nonnegative integers or the nonnegative rationals and let Ω be the set of all functions mapping T into \mathfrak{X} . Ω with its product topology is a compact metric space and so $C(\Omega)$, the Banach space of continuous functions on Ω , is separable [1, p. 340], and the weak * topology of the closed unit sphere of the Banach space $\operatorname{rca}(\Omega)$ of regular countably additive set functions on Ω is a metric topology [1, p. 426]. If for each $\omega \in \Omega$ and $t \in T$ we define $x_t(\omega) = \omega(t)$ and if we let Ω be the σ -field of Borel subsets of Ω , then for each $\mu \in \mathcal{O}(\Omega)$, the set of all probability measures in $\operatorname{rca}(\Omega)$, we get a stochastic process $X_{\mu} = (\Omega, \Omega, x_t, \mathfrak{X}, \mu)$.

If $\omega \in \Omega$, $\Lambda \in \Omega$ and $\mu \in \mathcal{O}(\Omega)$, let $\omega_s^+ \in \Omega$ be defined by $\omega_s^+(t) = \omega(s+t)$, Λ_s^+ be the set of all $\omega \in \Omega$ for which $\omega_s^+ \in \Lambda$ and let $\lambda_s^+ \in \mathcal{O}(\Omega)$ be defined by $\lambda_s^+(\Lambda) = \lambda(\Lambda_s^+)$. Let \mathfrak{D}_0^{μ} be the set of all $\lambda \in \mathcal{O}(\Omega)$ which have the property that for some $0 < s_1 < \cdots < s_n$ in T and A_1, \cdots, A_n in Σ , $\mu(x_s) \in A_1, \cdots, x_s \in A_n) > 0$ and

$$\lambda(\Lambda) = \mu(x_{s_1} \in A_1, \cdots, x_{s_n} \in A_n, \Lambda_{s_n}^{\dagger}) / \mu(x_{s_1} \in A_1, \cdots, x_{s_n} \in A_n)$$

for each $\Lambda \subseteq \alpha$. Let \mathfrak{S}^{μ} be the set of all weak * compact simplexes \mathfrak{D} in $\mathcal{O}(\Omega)$ which contain \mathfrak{D}_0^{μ} and have the property that $\mu \subseteq \mathfrak{D}$ implies that

- (i) $\mu_t^+ \in \mathfrak{D}$ for each $t \in T$;
- (ii) $\mu(\cdot|x_0 \in A) \in \mathfrak{D}$ for each $A \in \Sigma$. Ordering \mathfrak{S}^{μ} by inclusion and applying Zorn's Lemma, we find that \mathfrak{S}^{μ} contains minimal elements. Let \mathfrak{D}^{μ} be one of these minimal subsets of $\mathfrak{O}(\Omega)$. Let \mathfrak{Y}^{μ} be the set of extreme points of \mathfrak{D}^{μ} , Ω^{μ} the set of all functions mapping T into \mathfrak{Y}^{μ} , and $\{x_i^{\mu}, t \in T\}$ the family of functions mapping Ω^{μ} into \mathfrak{Y}^{μ} defined by $x_i^{\mu}(\omega^{\mu}) = \omega^{\mu}(t)$. Finally, let \mathfrak{A}^{μ} be the σ -field generated by x_i^{μ} , $t \in T$.

Received by the editors July 15, 1969.

AMS Subject Classifications. Primary 6040, 6060.

Key Words and Phrases. Stochastic process, temporally homogeneous Markov process, extreme points, Choquet's Theorem.

If $\mu \in \mathcal{O}(\Omega)$ and $\lambda \in \mathcal{Y}^{\mu}$, then $\lambda_t^+ \in \mathfrak{D}^{\mu}$. Thus by Choquet's Theorem there exist unique measures $P^{\mu}(\cdot)$ and $P_t^{\mu}(\lambda, \cdot)$ on the weak * Borel subsets of \mathcal{Y}^{μ} such that for any weak * continuous linear functional f on $\mathcal{O}(\Omega)$,

$$f(\mu) = \int_{\mathcal{Y}^{\mu}} f(\nu) P^{\mu}(d\nu) \quad \text{and} \quad f(\lambda_t^+) = \int_{\mathcal{Y}^{\mu}} f(\nu) P^{\mu}_{\iota}(\lambda, d\nu).$$

Let $\mu^* \in \mathcal{O}(\Omega^{\mu}, \Omega^{\mu})$ be defined by

$$\mu^*(x_{t_1}^{\mu} \in B_1, \dots, x_{t_1+\dots+t_n}^{\mu} \in B_n)$$

$$= \int_{\mathbb{Q}^{\mu}} P(d\nu_0) \int_{B_1} P_{t_1}(\nu_0, d\nu_1) \dots \int_{B_n} P_{t_n}(\nu_{n-1}, d\nu_n).$$

 μ^* is consistently defined since for any continuous linear functional f on $\mathcal{O}(\Omega)$,

$$\int_{\mathcal{Y}^{\mu}} f(\nu) \left(\int_{\mathcal{Y}^{\mu}} P_s^{\mu}(\lambda, d\xi) P_t^{\mu}(\xi, d\nu) \right) = \int_{\mathcal{Y}^{\mu}} P_s^{\mu}(\lambda, d\xi) \int_{\mathcal{Y}^{\mu}} f(\nu) P_t^{\mu}(\xi, d\nu)$$

$$= \int_{\mathcal{Y}^{\mu}} f(\xi_t^+) P_s^{\mu}(\lambda, d\xi)$$

$$= f(\lambda_{s+t}^+)$$

$$= \int_{\mathcal{Y}^{\mu}} f(\nu) P_{s+t}^{\mu}(\lambda, d\nu)$$

and so by the uniqueness of $P_t^{\mu}(\lambda, \cdot)$

$$P_{s+t}^{\mu}(\lambda,\,\cdot\,)\,=\,\int_{\gamma\mu}\,P_{s}^{\mu}(\lambda,\,d\nu)P_{t}^{\mu}(\nu,\,\cdot\,).$$

Thus not only is μ^* consistently defined, but $X_{\mu}^* = (\Omega^{\mu}, \alpha^{\mu}, x_t^{\mu}, y^{\mu}, \mu^*)$ is a temporally homogeneous Markov process with initial distribution P^{μ} and transition probability function P_t^{μ} .

If $\mu \in \mathcal{O}(\Omega)$ and $\nu \in \mathcal{Y}^{\mu}$, then for each set $A \in \Sigma$, either $\nu(x_0 \in A)$ or $\nu(x_0 \in A^c)$ is zero. Indeed, suppose that $\nu(x_0 \in A) > 0$ and $\nu(x_1 \in A^c) > 0$. Then

$$\nu(\cdot) = \nu(\cdot \mid x_0 \in A)\nu(x_0 \in A) + \nu(\cdot \mid x_0 \in A^c)\nu(x_0 \in A^c).$$

Since $\nu \in \mathcal{Y}^{\mu}$ and since $\nu(\cdot | x_0 \in A)$ and $\nu(\cdot | x_0 \in A^c)$ are both in \mathfrak{D}^{μ} we must have

$$\nu(\cdot) = \nu(\cdot \mid x_0 \in A) = \nu(\cdot \mid x_0 \in A^c).$$

Thus $\nu(x_0 \in A) = \nu(x_0 \in A \mid x_0 \in A^c) = 0$ which is a contradiction.

Let $\mathfrak{C}(\nu)$ be the class of all sets $A \in \Sigma$ for which $\nu(x_0 \in A) > 0$. Ordering \mathfrak{C} by inclusion and applying Zorn's Lemma, we see that \mathfrak{C} has a unique minimal element which is a set consisting of a single point δ_{ν} . For each $t \in T$, we now let $\hat{x}_t = \delta_{x_t}^{\mu}$ and \hat{X}_{μ} be the stochastic process

$$\hat{X}_{\mu} = (\Omega^{\mu}, \alpha^{\mu}, \hat{x}_{t}, \mathfrak{X}, \mu^{*}).$$

We then have the

THEOREM. If $\mu \in \mathcal{O}(\Omega)$, then $X_{\mu} = \hat{X}_{\mu}$ in distribution.

Proof. Since for any continuous function g on Ω

$$\int g(\omega)\lambda_t^+(d\omega) = \int_{\mathcal{Y}} \left(\int_{\Omega} g(\omega)\nu(d\omega) \right) P_t(\lambda, d\nu)$$
$$= \int_{\Omega} g(\omega) \int_{\mathcal{Y}} \nu(d\omega) P_t(\lambda, d\nu),$$

we have for each $\Lambda \in \alpha^{\mu}$

$$\lambda_t^+(\Lambda) = \int_{\mathfrak{A}} \nu(\Lambda) P_t(\lambda, d\nu).$$

Letting $\sigma^{\mu}A = \{\nu : \delta_{\nu} \in A\}$ and dropping the superscript μ from \mathcal{Y}^{μ} , P^{μ}_{ι} and σ^{μ} , we have for any $A \in \Sigma$ and $\Lambda \in \mathfrak{A}$,

$$\lambda_t^+(x_0 \in A, \Lambda) = \int_{\sigma A} \nu(x_0 \in A, \Lambda) P_t(\lambda, d\nu) = \int_{\sigma A} \nu(\Lambda) P_t(\lambda, d\nu).$$

Thus

$$\lambda(x_t \in A, \Lambda_t^{\dagger}) = \int_{\mathcal{A}^A} \nu(\Lambda) P_t(\lambda, d\nu).$$

When $\Lambda = \Omega$,

$$\lambda(x_t \in A) = \int_{A} P_t(\lambda, d\nu)$$

and so

$$\mu(x_t \in A) = \int_{\mathfrak{A}} \lambda(x_t \in A) P(d\lambda) = \int P(d\lambda) P_t(\lambda, \sigma A).$$

Using induction on n we see that if $\lambda \in \mathcal{Y}$, then

$$\lambda(x_{t_1} \in A_1, \dots, x_{t_1 + \dots + t_n} \in A_n)$$

$$= \int_{\sigma A_1} P_{t_1}(\lambda, d\nu_1) \int_{\sigma A_2} P_{t_2}(\nu_1, d\nu_2) \dots \int_{\sigma A_n} P_{t_n}(\nu_{n-1}, d\nu_n).$$

Indeed if n = 1 we have already proven it and if it is true for n = r - 1, then

$$\lambda(x_{t_1} \in A_1, \dots, x_{t_1 + \dots + t_r} \in A_r)$$

$$= \lambda(x_{t_1} \in A_1, (x_{t_2} \in A_2, \dots, x_{t_2 + \dots + t_r} \in A_r)_{t_1})$$

$$= \int_{\sigma A_1} \nu_1(x_{t_2} \in A_2, \dots, x_{t_2 + \dots + t_r} \in A_r) P_{t_1}(\lambda, d\nu_1)$$

$$= \int_{\sigma A_1} P_{t_1}(\lambda, d\nu_1) \int_{\sigma A_r} P_{t_2}(\nu_1, d\nu_2) \dots \int_{\sigma A_r} P_{t_r}(\nu_{r-1}, d\nu_r).$$

Thus

$$\mu(x_{0} \in A_{0}, x_{t_{1}} \in A_{1}, \dots, x_{t_{1} + \dots + t_{n}} \in A_{n})$$

$$= \int_{\mathcal{Y}} \nu(x_{0} \in A_{0}, x_{t_{1}} \in A_{1}, \dots, x_{t_{1} + \dots + t_{n}} \in A_{n}) P(d\nu)$$

$$= \int_{\sigma A_{0}} \nu(x_{t_{1}} \in A_{1}, \dots, x_{t_{1} + \dots + t_{n}} \in A_{n}) P(d\nu)$$

$$= \int_{\sigma A_{0}} P(d\nu_{0}) \int_{\sigma A_{1}} P_{t_{1}}(\nu_{0}, d\nu_{1}) \dots \int_{\sigma A_{n}} P_{t_{n}}(\nu_{n-1}, d\nu_{n}).$$

$$= \mu^{*}(\hat{x}_{0} \in A_{0}, \hat{x}_{t_{1}} \in A_{1}, \dots, \hat{x}_{t_{1} + \dots + t_{n}} \in A_{n})$$

and the proof is complete.

REFERENCES

- 1. N. Dunford and J. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 2. P. A. Meyer, *Probability and potentials*, Blaisdell, Waltham, Mass., 1966. MR 34 #5119.

University of California, Riverside