MARKOV PROCESS REPRESENTATIONS OF
GENERAL STOCHASTIC PROCESSES

DUDLEY PAUL JOHNSON

ABSTRACT. In this paper we show that any separable stochastic
process on a compact metric space can be derived from a temporally
homogeneous Markov process on the extreme points of a compact
convex set of measures.

Let & be a compact metric space with Borel field 2. Let T be either
the nonnegative integers or the nonnegative rationals and let @ be
the set of all functions mapping T into X.  with its product topology
is a compact metric space and so C(Q), the Banach space of con-
tinuous functions on €, is separable [1, p. 340], and the weak *
topology of the closed unit sphere of the Banach space rca(Q) of
regular countably additive set functions on @ is a metric topology
[1, p. 426]. If for each wEQ and tET we define x,(w) =w() and if
we let @ be the o-field of Borel subsets of Q, then for each u&®(Q),
the set of all probability measures in rca(2), we get a stochastic
process X ,=(Q, @, x¢, X, pu).

IfwEQ,ACE@and uER(Q), let w, EQ be defined by w;' (£) =w(s+£),
A be the set of allwEQ for which w €A and let \;" €®(Q) be defined
by NP (A) =A(AJ). Let D4 be the set of all A€ ®(Q) which have the
property that for some 0<s;< +++ <s, in T and 4y, - -+, 4, in
2, u(x, €4y, ¢ ¢ ¢, %,,EA4,) >0 and

>\(A) = ”(xal e Aly c 7x',.€ A,.) At,,)/l-‘(xtx e Al; oty X, e An)

for each AE Q. Let &¢# be the set of all weak * compact simplexes
D in @(Q) which contain D and have the property that u& D implies
that

(i) wtED for each tET;

(i) w(- |xo€A)€.‘,D for each 4 E€Z. Ordering &* by inclusion and
applying Zorn’s Lemma, we find that &# contains minimal elements.
Let D* be one of these minimal subsets of ®(Q). Let Y* be the set of
extreme points of D#, @+ the set of all functions mapping T into Y,
and {x:‘, tET} the family of functions mapping Q# into Y* defined
by x}(w*) =w*(¢). Finally, let @* be the o-field generated by x}, t&T.
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If E®(Q) and NEY#, then \;f €D+ Thus by Choquet’s Theorem
there exist unique measures P#(-) and PY(\, -) on the weak * Borel
subsets of Y* such that for any weak * continuous linear functional
fon ®(Q),

0 = [ orea) and 00 = [ )P, a0,

Let u*&®(Q2+, @*) be defined by

M ®
H*(xt, € By, - - - y ¥t .ty & Bn)

= f P(duo)f P (vo, dvy) -+ f P, (vi—1, dvy).
Y B, B,

u* is consistently defined since for any continuous linear functional

f on @),

J, ( [, Po vt dv)) - [, Hovan [ 0P s

= f - JE) P, dg)
= f(\ro)
= [ sorho.a
‘yl‘
and so by the uniqueness of Py(\, )
PLatn ) = [P0, P, ).
‘y#

Thus not only is u* consistently defined, but X = (Q#, @*, x¥, Y, u*)
is a temporally homogeneous Markov process with initial distribution
Pr and transition probability function P;.

If u€®(Q) and vEY*, then for each set A EZ, either v(x¢EA4) or
p(xoE A°) is zero. Indeed, suppose that ¥(xe&4) >0 and v (x,EA4°) >0.
Then

() = v(- | 2 € A)r(x0 € A) + »(- | 20 € A)w(20 € 4°).

Since »&Y* and since »(- IonA) and »(- ]onA°) are both in D* we
must have

p(-) = v(- | 2 € 4) = v(- | % € 4°).
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Thus v(xeE4) =v(xo€A|xo€A°) =0 which is a contradiction.

Let €(») be the class of all sets 4 €2 for which v(x,& A4) > 0. Order-
ing € by inclusion and applying Zorn’s Lemma, we see that € has a
unique minimal element which is a set consisting of a single point
d,. For each t& T, we now let £, =4,* and X, be the stochastic process

Xﬂ = (Q*, @*, £, X, u*).
We then have the
THEOREM. If uE®(Q), then X, = X, in distribution.

PRrOOF. Since for any continuous function g on @

Jetontian = | ([ sr@)pana

= [ st [ rarpiona,
Q Y
we have for each A€ @+

¥ = 14 t V).
Nia) = fy (A) P.(A, dv)

Letting o*A4 = {v:B,EA } and dropping the superscript p from
y#, P} and o#, we have for any A EY and AEQ,

Ao € 4,4) = f

dA

V(xo E A, A)Pg()\, dV) = f I'(A)Pg()\, dl’).

gA

Thus
Ao € 4,89 = [ PO ).
When A=Q,
ANz € 4) = fAP,()\,dv)
and so

ula € 4) = fny,e OP@ = [P@)P.0,04).

Using induction on # we see that if A€, then
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My, E Ay, - %04 ...+, € 44)

= f Pg‘(x, dl’l)f Ptz(lll, dllz) . f Pt,,("n—l, dl’n).
oA, [7: %% gA,

Indeed if n =1 we have already proven it and if it is true for n=r—1,
then

>.(xt,€ Y PREI y Xty + . . .+t,€ Ar)
= A(xtle 4, (xtge Agy - - - IE.27E e .+¢,€ Ar)tl)

= f Vl(x‘:e AZ) LRI 779 SSPR By e Ar)Ptl()\, dvl)
LZ: %Y

=f P‘l()\) d”l)f P;,(vl, dl/z) . 'f Ptr(v,-_l, dllr).
gAy gAg oA,

Thus
Il(xoe Ao,xhe Ax, cr Xy 4 .. .+¢“€ An)

=f‘yl'(xo€ Ao,xgle Al, R 7% .+l,‘€ An)P(dV)

=f v(x‘leAlr"')xtl+...+t”€ flﬂ)P(dV)
cA

0
= f P(dl’o) f Pgl(llo, dVl) .. f P;"(Vn_l, dl’n).
(2.0} oAy o4,
= ﬂ*(ﬁoe A07£t1€ Al, A ;ﬁh-!- .. .+t,,€ An)
and the proof is complete.
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