A CLASSIFICATION OF IMMERSED KNOTS
MAX K. AGOSTON

This paper in a sense completes the study begun in [6] and [3].
We shall make extensive use of the notation and results of [6] and
shall show that the group of immersed homotopy #n-spheres in m-space
fits naturally into exact sequences similar to those of [6]. Alterna-
tively, one can look on this paper as giving geometric meaning to the
groups m,G and 7, (G, SO,). (See also [4]. For additional information
about immersions see §4 of [3].) In §1 we give the necessary defini-
tions; the main results are stated in §2. We would like to thank the
referee for some useful observations.

1. Preliminaries. Throughout this paper all manifolds will be
C», compact, and oriented. All maps are transverse to any boundaries
and take boundaries to boundaries. If f: M*»—1¥/™ is an immersion, we
orient the normal bundle of f, »;, by the equation

™™ + v = frrw,

where 7y, 7w are the tangent bundles of M, W, respectively. The
boundary of M, dM, is oriented by the equation

£+ rom = i | OM,

where £ is a line bundle of vectors orthogonal to d M with the vectors
pointing out from M oriented positively. — M denotes M with the
negative orientation. Given a vector bundle n over M we shall always
identify M with the zero-section of 7; also, we do not distinguish be-
tween the normal disk bundle of a submanifold and a tubular

neighborhood.
Next, we say that (f, §): M"—W=is a framed immersion if f: M—W
is an immersion and § is a framing of vy, i.e., F=(f1, + + * , fm—s) is an

ordered collection of orthogonal vector fields of »; (this is compatible
with [6] in case f is an imbedding). Now let M" and W™ be closed
manifolds (boundaries are excluded only for simplicity). Two immer-
sions f, g: M—W are h-cobordant if there is an h-cobordism V=»+!
with dV=M\U—M and an immersion H:V—WX[0, 1] with
H[ M=fX0 and Hl —M=gX1. Two framed immersions (f, F),
(g, §): M—W are h-cobordant if there is an h-cobordism V**! with
dV=M\U—M and a framed immersion (H, 3¢): VWX [0, 1] with
(H, 5¢)| M= (f, $) X0 and (H, 3)| —M=(g, §) X1. We use [M, f],
[M, f, ] to denote the h-cobordism class of f, (f, F), respectively—
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the range W will always be clear from the context. Also, let us recall
the notion of regular homotopy between immersions (see [5]). Two
framed immersions (f, §), (g, §): M—W will be called regularly
homotopic if there is a 1-parameter family of framed immersions
(H,, 3¢): M>W with (H,, 3Co) =(f, §) and (H,, 31) = (g, Q).

As usual, D" will be the closed unit ball in Euclidean n-space R*»
with the natural orientation and S*~!=0D" G, denotes the H-space
of maps of S*~1—S5"1 of degree +1 and SO, will be the subspace of
orthogonal maps. The natural inclusion R*C R**! gives rise to inclu-
sions D"C D1 G,CGnu, S0,ZS50,.. Let G=lim,,, G, and
SO =1im ., SO,.

2. The exact sequences. For the remainder of this paper we assume
thatn=5and k=m —n=3. We define I™" to be the set of k-cobordism
classes of immersed homotopy #n-spheres in S™ and I7"" to be the set
of h-cobordism classes of framed immersed homotopy #z-spheres in
Sm. There is an obvious operation of connected sum which makes
I and I;*" into abelian groups (see [2, §1.3 and §1.4]). Using [7]
it is easy to see that [Z*, f]=0&I™" (or [Z*, f, F]=0EI") if and
only if Z* is the boundary of an (#+41)-disk U"*! and there is an
immersion H: Urt*1—D™+! (or framed immersion (H, 3¢) : Urt1—Dm+1)
so that H|Z=f (or (H, )|Z=(f, F)).

Define groups P, as follows:

P, =2, n =0 (mod 4)
=Z, n=2 (mod4)
=0, n odd.

In §3 we shall define homomorphisms &;, ;, and d; making the
following sequences exact:

w m,n ¢ m.,n 5 w m—1,n—
W oS0 A B N S0, L
m,n —‘2 ¢ 52 m—1,n— _‘
@ ol e B, BT S e
6_03 T45'3 53 Z’s
@k oI 5 (G,S0,) > Py > It S 1(G,S0) — - - -
We also get a commutative (up to sign) diagram:
TS0k TG — P,
mm/ N -
(4)k 7rn+I(G; Sok) I/ 7|'n(G, SOk)

P n+1 I Tn—lS Ok
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Next, let Im™n (Im{"") be the group of regular homotopy classes
of (framed) immersions of S in S™. The group operation is again the
connected sum in both cases. Then it follows from [5] that there are
natural isomorphisms Im™*=m,Vy=~m,(SO, SO:) and Im;"
=T, S0n=m,S0. Finally, we also consider the groups Ct and FCE
of isotopy classes of imbedding, respectively, framed imbeddings, of
S* in S™ and the groups 6" and 6" of k-cobordism classes of
imbedded, respectively, framed imbedded, homotopy #n-spheres in S™.
Collecting the results of [3], [6], and this paper we get a great many
interrelated exact sequences which we shall not bother to write out
here. In addition, there are natural suspension maps of the sequences
DeS5(Deqn, 1=1, 2, 3and N =0, where we take the rear extensions of
framings as described in [6, §1.2].

We shall display two interesting diagrams of exact sequences which
are derived from standard diagram chasing:

mn41(G, Gr)
" T
s n m,n m,n n
(S It Im I I
Wﬂ(Ga Gk)

Im.n — Im+1.n

(6)1; 1l',.Sk = ‘Irn(SOk.;.l, SOk) ‘ﬂ'n—l(SOk+l, SOk) = m.-lS",

Imm,n —— Imm+l.n

where r=0mt¥.n and [r=ImtN.» for N>n. Also, observe that
I7™ is independent of m.

In conclusion, we point out that this paper could have been extend-
ed to the case of “relative” immersed knots 4 la [1].

3. The maps &, &, 9. In this section we shall define the maps
@i, &i, and ;. Let w;, ¢, and 9; be defined asin [6] and let j;:0mr— ™7,
J2:6/""—I" be the obvious maps which assign to each k-cobordism
class of imbeddings, respectively, framed imbeddings, its correspond-
ing h-cobordism class as an immersion, respectively, framed immer-
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sion. (It should be clear that 8™* and 7" can be so interpreted. See
also [1].)
Define

wr = jaw1, 2 = ¢y,
és = composition of m,(G, SOx) — m.(G, SO) i P,,
32 = j2ds, 03 = j19s
Let [Z~, f, §|€ 1" and [N®, g]&€I™". Define
&[22, 1,5]) = [ 5] € I,
01([N™, g]) = vy € Ta1SOy,

where we identify the normal bundle v, with the element in 7,_;.SO;
that it determines by the classification theorem of bundles over
spheres.

Finally we come to the maps &. and @; which, together with the
exactness of (2)x at m.G and (3)r at w.(G, SOx), are really the heart
of this paper.

LemMA 3.1. 6721 for N22n+1.

Proor. Now all homotopy z-spheres Z* imbed in S¥ and all immer-
sions f:Z—SV are regularly homotopic by [5]. A regular homotopy
also carries along the framing. Therefore j, is onto. That j, is one-to-
one follows from the fact that we may approximate regular homo-
topies by imbeddings using Whitney’s theorem.

Thus we can define

—1
w; = composition of I; f—» I;V'"]—2—> ij'” i el
where N=2n+1.

Now let [Z», f]&€ ™= It is well known (see [7]) that = is obtained
by glueing two n-disks Do and D; together via a diffeomorphism of
their boundaries. We may then take framings &; of V/I D, 1=0,1, and
let a;:D,-XD’C—w,IDi be imbeddings satisfying a;(x, 0)=x, xED;
and da;(8;) =F;, where &; is the pull-back by the projection D;X D*
—DF¥ of a positive frame at 0& D*. We can arrange it so that a;(x, )
=ao(x, u(x)y), x&dD,, y&D*, for some pu:dDy—SO,. (Compare [6,
§3.3].) We shall use the notation $,|dDo=puF,|dD, to describe this
situation. Now assume that f] Dy is an imbedding and that f(Z — D)
does not meet f(D,). Let f’ be the composition of £L,Sm—Sm+¥ for
some N>n, and let §; be the framing of V,,I D; which is the rear ex-
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tension of &;. Next, move f’ into an imbedding g:Z—S™*" via a regu-
lar homotopy k. satisfying ht| Do=f" and h(Z—Do)Nh(Dy)=.
h, carries along the framing &/, so that we get a framing G; of V0|D.~
with 91| 6Do=ﬁ90| dD,, where g is the composition of 9D%SO;
—SO0.n. If we apply the construction of [6, §3.3], to (2, g, G:), we
get an element [N]Em.(G, SOk, i.e., if we let u:S™tN —g(Z)—Sk+N-1
be a homotopy inverse of y—ay(x0, ¥), x0& Do with ua,(x, y) =y for all
xED,, then N:D—Giyn is given by N(x)(y) =uou(x, y), x&ED,,
y&ES*N-1 Define

wi([2, 7)) = [Al.

This finishes the definitions of all the maps and it is easy to see,
using [6], that they are well defined homomorphisms.

4. Exactness. The proof of exactness of (1), (2)x, and (3)« is very
similar to the corresponding proofs given in [6]. In general, the only
difference is that here we have immersions instead of imbeddings.
Anyone who understands [6] can easily make the appropriate trans-
lations. We shall, however, outline a proof of exactness in those
places that differ from the corresponding ones in [6]. One essential
difference is the fact that any abstract framed surgery can be realized
ambiently. Another is that framed immersions of #-spheres in S™ are
regularly homotopic to immersions in S"*+1.

We first prove exactness at m,G in (2);. That @.0.=0 follows from
[6, §5.5], and the definition of & and &,. Let [g]E7.G, g: S*—Gy and
suppose ¢:([g])=0. Define g:S"XSV"1—S¥1 by z(x, y) =g(x) (),
xES*, y& SV, and let T=7"(e), e&SV~1. We may assume that
2 is a framed #m-submanifold of S*XS¥-1C.S*+¥. In fact, since
3:([g]) =0, we may further assume that 2 is a homotopy sphere
(see [6, §4.7]). By Theorem 6.4 of [5], = is regularly homotopic
to a framed immersion (Z, f) in S™. Then & ([Z, f]) = [g]

Next, let us consider exactness at I;"". There is no problem in
showing that @0,=0. Suppose [Z, f, F|EI*" and @, ([Z, f, §]) =0. It
follows from the definition of &, and the exactness of the Kervaire-
Milnor sequence that there is a w-manifold W and a framing of its
stable normal bundle so that dW =2 and the framing restricted to Z
is essentially a suspension of §. But then we can use [5] to obtain a
framed immersion (g, §): W—S™ so that g]Z =f and <3|E =g. Define
v =v(W, Q)EP,,, as in §4.5 of [6]. Then 3,(v) = [Z, f, F], because
using [5] we can allow in the definition of 9. not only framed imbed-
dings of W but also framed immersions.

This finishes our discussion of the exactness of (2);. Alternatively,



1970] A CLASSIFICATION OF IMMERSED KNOTS 715

one could observe first that I]*"~ I} ~6} using [5], so that exactness
follows from the exactness of the Kervaire-Milnor sequence.

The commutativity (up to sign) of (4) is proved asin [6] and so by
[6, §5.3], the exactness of (3): will be established once we show that
33 =0. But consider

w3
M B c————— Tu(Gy SOk)

s &

IntN.
S
Jt
w3 ¢

GPEN 1 et 7a(G, SO) —— P,

If N>mn, then j; is an isomorphism (proved similarly to Lemma
3.1), and so ¢3w3=¢3wajf15=0.
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