A CLASSIFICATION OF IMMERSED KNOTS

MAX K. AGOSTON

This paper in a sense completes the study begun in [6] and [3]. We shall make extensive use of the notation and results of [6] and shall show that the group of immersed homotopy n-spheres in m-space fits naturally into exact sequences similar to those of [6]. Alternatively, one can look on this paper as giving geometric meaning to the groups $\pi_n G$ and $\pi_n(G, SO_q)$. (See also [4]. For additional information about immersions see §4 of [3].) In §1 we give the necessary definitions; the main results are stated in §2. We would like to thank the referee for some useful observations.

1. **Preliminaries.** Throughout this paper all manifolds will be C^{∞} , compact, and oriented. All maps are transverse to any boundaries and take boundaries to boundaries. If $f: M^n \rightarrow W^m$ is an immersion, we orient the normal bundle of f, ν_f , by the equation

$$\tau_M + \nu_f = f^* \tau_W,$$

where τ_M , τ_W are the tangent bundles of M, W, respectively. The boundary of M, ∂M , is oriented by the equation

$$\xi + \tau_{\partial M} = \tau_M \mid \partial M$$
,

where ξ is a line bundle of vectors orthogonal to ∂M with the vectors pointing out from M oriented positively. -M denotes M with the negative orientation. Given a vector bundle η over M we shall always identify M with the zero-section of η ; also, we do not distinguish between the normal disk bundle of a submanifold and a tubular neighborhood.

Next, we say that $(f,\mathfrak{F})\colon M^n{\to}W^m$ is a framed immersion if $f\colon M{\to}W$ is an immersion and \mathfrak{F} is a framing of ν_f , i.e., $\mathfrak{F}=(f_1,\cdots,f_{m-n})$ is an ordered collection of orthogonal vector fields of ν_f (this is compatible with $[\mathbf{6}]$ in case f is an imbedding). Now let M^n and W^m be closed manifolds (boundaries are excluded only for simplicity). Two immersions f, $g\colon M{\to}W$ are h-cobordant if there is an h-cobordism V^{n+1} with $\partial V = M \cup -M$ and an immersion $H\colon V{\to}W\times [0,\ 1]$ with $H|M=f\times 0$ and $H|-M=g\times 1$. Two framed immersions $(f,\ \mathfrak{F}),(g,\ \mathfrak{F})\colon M{\to}W$ are h-cobordant if there is an h-cobordism V^{n+1} with $\partial V = M \cup -M$ and a framed immersion $(H,\ \mathfrak{F})\colon V{\to}W\times [0,\ 1]$ with $(H,\ \mathfrak{F})|M=(f,\ \mathfrak{F})\times 0$ and $(H,\ \mathfrak{F})|-M=(g,\ \mathfrak{F})\times 1$. We use $[M,\ f],[M,\ f,\ \mathfrak{F}]$ to denote the h-cobordism class of f, $(f,\ \mathfrak{F})$, respectively—

Received by the editors May 28, 1969.

the range W will always be clear from the context. Also, let us recall the notion of regular homotopy between immersions (see [5]). Two framed immersions (f, \mathfrak{F}) , $(g, \mathfrak{G}): M \rightarrow W$ will be called regularly homotopic if there is a 1-parameter family of framed immersions $(H_t, \mathfrak{K}_t): M \rightarrow W$ with $(H_0, \mathfrak{F}_0) = (f, \mathfrak{F})$ and $(H_1, \mathfrak{K}_1) = (g, \mathfrak{F})$.

As usual, D^n will be the closed unit ball in Euclidean n-space R^n with the natural orientation and $S^{n-1} = \partial D^n$. G_n denotes the H-space of maps of $S^{n-1} \rightarrow S^{n-1}$ of degree +1 and SO_n will be the subspace of orthogonal maps. The natural inclusion $R^n \subseteq R^{n+1}$ gives rise to inclusions $D^n \subseteq D^{n+1}$, $G_n \subseteq G_{n+1}$, $SO_n \subseteq SO_{n+1}$. Let $G = \lim_{n \to \infty} G_n$ and $SO = \lim_{n \to \infty} SO_n$.

2. The exact sequences. For the remainder of this paper we assume that $n \ge 5$ and $k = m - n \ge 3$. We define $I^{m,n}$ to be the set of h-cobordism classes of immersed homotopy n-spheres in S^m and $I_f^{m,n}$ to be the set of h-cobordism classes of framed immersed homotopy n-spheres in S^m . There is an obvious operation of connected sum which makes $I^{m,n}$ and $I_f^{m,n}$ into abelian groups (see $[2, \S 1.3 \text{ and } \S 1.4]$). Using [7] it is easy to see that $[\Sigma^n, f] = 0 \in I^{m,n}$ (or $[\Sigma^n, f, \mathfrak{F}] = 0 \in I_f^{m,n}$) if and only if Σ^n is the boundary of an (n+1)-disk U^{n+1} and there is an immersion $H: U^{n+1} \to D^{m+1}$ (or framed immersion $(H, \mathfrak{M}): U^{n+1} \to D^{m+1}$) so that $H \mid \Sigma = f$ (or $(H, \mathfrak{M}) \mid \Sigma = (f, \mathfrak{F})$).

Define groups P_n as follows:

$$P_n = Z,$$
 $n \equiv 0 \pmod{4}$
= $Z_2,$ $n \equiv 2 \pmod{4}$
= $0,$ $n \text{ odd.}$

In §3 we shall define homomorphisms $\bar{\omega}_i$, $\bar{\phi}_i$, and $\bar{\partial}_i$ making the following sequences exact:

$$(1)_{k} \cdot \cdot \cdot \cdot \to \pi_{n}SO_{k} \xrightarrow{\overline{\omega}_{1}} I_{f}^{m,n} \xrightarrow{\overline{\phi}_{1}} I^{m,n} \xrightarrow{\overline{\partial}_{1}} \pi_{n-1}SO_{k} \xrightarrow{\overline{\omega}_{1}} I_{f}^{m-1,n-1} \to \cdot \cdot \cdot$$

$$(2)_{k} \quad \cdot \quad \cdot \longrightarrow I_{f}^{m,n} \xrightarrow{\widetilde{\omega}_{2}} \pi_{n}G \xrightarrow{\widetilde{\phi}_{2}} P_{n} \xrightarrow{\widetilde{\partial}_{2}} I_{f}^{m-1,n-1} \xrightarrow{\widetilde{\omega}_{2}} \pi_{n-1}G \longrightarrow \cdot \cdot \cdot$$

$$(3)_k \quad \cdots \to I^{m,n} \xrightarrow{\omega_3} \pi_n(G,SO_k) \xrightarrow{\overline{\phi}_3} P_n \xrightarrow{\overline{\partial}_3} I^{m-1,n-1} \xrightarrow{\omega_3} \pi_{n-1}(G,SO_k) \to \cdots$$

We also get a commutative (up to sign) diagram:

Next, let $Im^{m,n}$ ($Im_f^{m,n}$) be the group of regular homotopy classes of (framed) immersions of S^n in S^m . The group operation is again the connected sum in both cases. Then it follows from [5] that there are natural isomorphisms $Im^{m,n} \approx \pi_n V_{m,n} \approx \pi_n (SO, SO_k)$ and $Im_f^{m,n} \approx \pi_n SO_m \approx \pi_n SO$. Finally, we also consider the groups C_n^k and FC_n^k of isotopy classes of imbedding, respectively, framed imbeddings, of S^n in S^m and the groups $\theta^{m,n}$ and $\theta_f^{m,n}$ of h-cobordism classes of imbedded, respectively, framed imbedded, homotopy n-spheres in S^m . Collecting the results of [3], [6], and this paper we get a great many interrelated exact sequences which we shall not bother to write out here. In addition, there are natural suspension maps of the sequences $(l)_k \xrightarrow{S} (l)_{k+N}, l=1, 2, 3$ and $N \ge 0$, where we take the rear extensions of framings as described in [6, §1.2].

We shall display two interesting diagrams of exact sequences which are derived from standard diagram chasing:

where $\theta^n = \theta^{m+N,n}$ and $I^n = I^{m+N,n}$ for N > n. Also, observe that $I_f^{m,n}$ is independent of m.

In conclusion, we point out that this paper could have been extended to the case of "relative" immersed knots à la [1].

3. The maps $\bar{\omega}_i$, $\bar{\phi}_i$, $\bar{\partial}_i$. In this section we shall define the maps $\bar{\omega}_i$, $\bar{\phi}_i$, and $\bar{\partial}_i$. Let ω_i , ϕ_i , and ∂_i be defined as in [6] and let $j_1:\theta^{m,n}\to I^{m,n}$, $j_2:\theta_f^{m,n}\to I_f^{m,n}$ be the obvious maps which assign to each h-cobordism class of imbeddings, respectively, framed imbeddings, its corresponding h-cobordism class as an immersion, respectively, framed immer-

sion. (It should be clear that $\theta^{m,n}$ and $\theta_f^{m,n}$ can be so interpreted. See also [1].)

Define

$$\begin{split} \overline{\omega}_1 &= j_2 \omega_1, \quad \overline{\phi}_2 = \phi_2, \\ \overline{\phi}_3 &= \text{composition of } \pi_n(G, SO_k) \to \pi_n(G, SO) \xrightarrow{\phi_3} P_n, \\ \overline{\partial}_2 &= j_2 \partial_2, \quad \overline{\partial}_3 = j_1 \partial_3. \end{split}$$
Let $[\Sigma^n, f, \mathfrak{F}] \in I_f^{m,n}$ and $[N^n, g] \in I^{m,n}$. Define

$$\overline{\phi}_1([\Sigma^n, f, \mathfrak{F}]) = [\Sigma^n, f] \in I^{m,n},$$

$$\overline{\partial}_1([N^n, g]) = \nu_g \in \pi_{n-1}SO_k,$$

where we identify the normal bundle ν_g with the element in $\pi_{n-1}SO_k$ that it determines by the classification theorem of bundles over spheres.

Finally we come to the maps $\bar{\omega}_2$ and $\bar{\omega}_3$ which, together with the exactness of $(2)_k$ at $\pi_n G$ and $(3)_k$ at $\pi_n (G, SO_k)$, are really the heart of this paper.

LEMMA 3.1.
$$\theta_f^{N,n} \stackrel{j_2}{\approx} I_f^{N,n}$$
, for $N \ge 2n+1$.

PROOF. Now all homotopy n-spheres Σ^n imbed in S^N and all immersions $f: \Sigma \to S^N$ are regularly homotopic by [5]. A regular homotopy also carries along the framing. Therefore j_2 is onto. That j_2 is one-to-one follows from the fact that we may approximate regular homotopies by imbeddings using Whitney's theorem.

Thus we can define

$$\overset{-}{\omega_2} = \text{composition of } I_f^{m,n} \overset{S}{\underset{f}{\longrightarrow}} I_f^{N,n} \overset{-1}{\overset{-1}{\underset{f}{\longrightarrow}}} \theta_f^{N,n} \overset{\omega_2}{\underset{f}{\longrightarrow}} \pi_n G,$$

where $N \ge 2n+1$.

Now let $[\Sigma^n, f] \in I^{m,n}$. It is well known (see [7]) that Σ^n is obtained by glueing two n-disks D_0 and D_1 together via a diffeomorphism of their boundaries. We may then take framings \mathfrak{F}_i of $\nu_f | D_i$, i = 0, 1, and let $\alpha_i : D_i \times D^k \to \nu_f | D_i$ be imbeddings satisfying $\alpha_i(x, 0) = x, x \in D_i$ and $d\alpha_i(\mathfrak{E}_i) = \mathfrak{F}_i$, where \mathfrak{E}_i is the pull-back by the projection $D_i \times D^k \to D^k$ of a positive frame at $0 \in D^k$. We can arrange it so that $\alpha_1(x, y) = \alpha_0(x, \mu(x)y), x \in \partial D_0, y \in D^k$, for some $\mu : \partial D_0 \to SO_k$. (Compare [6, §3.3].) We shall use the notation $\mathfrak{F}_1 | \partial D_0 = \mu \mathfrak{F}_0 | \partial D_0$ to describe this situation. Now assume that $f | D_0$ is an imbedding and that $f(\Sigma - D_0)$ does not meet $f(D_0)$. Let f' be the composition of $\Sigma \xrightarrow{f} S^m \to S^{m+N}$, for some N > n, and let \mathfrak{F}'_i be the framing of $\nu_{f'} | D_i$ which is the rear ex-

tension of \mathfrak{F}_i . Next, move f' into an imbedding $g: \Sigma \to S^{m+N}$ via a regular homotopy h_t satisfying $h_t | D_0 = f'$ and $h_t(\Sigma - D_0) \cap h_t(D_0) = \emptyset$. h_t carries along the framing \mathfrak{F}'_i , so that we get a framing \mathfrak{F}_i of $\nu_0 | D_i$ with $\mathfrak{F}_1 | \partial D_0 = \overline{\mu} \mathfrak{F}_0 | \partial D_0$, where $\overline{\mu}$ is the composition of $\partial D_0 \xrightarrow{\mu} SO_k \to SO_{k+N}$. If we apply the construction of $[6, \S 3.3]$, to $(\Sigma, g, \mathfrak{F}_i)$, we get an element $[\lambda] \in \pi_n(G, SO_k)$, i.e., if we let $u: S^{m+N} - g(\Sigma) \to S^{k+N-1}$ be a homotopy inverse of $y \to \alpha_0(x_0, y)$, $x_0 \in D_0$ with $u\alpha_0(x, y) = y$ for all $x \in D_0$, then $\lambda: D_1 \to G_{k+N}$ is given by $\lambda(x)(y) = u\alpha_1(x, y)$, $x \in D_1$, $y \in S^{k+N-1}$. Define

$$\overline{\omega}_3([\Sigma, f]) = [\lambda].$$

This finishes the definitions of all the maps and it is easy to see, using [6], that they are well defined homomorphisms.

4. **Exactness.** The proof of exactness of $(1)_k$, $(2)_k$, and $(3)_k$ is very similar to the corresponding proofs given in [6]. In general, the only difference is that here we have immersions instead of imbeddings. Anyone who understands [6] can easily make the appropriate translations. We shall, however, outline a proof of exactness in those places that differ from the corresponding ones in [6]. One essential difference is the fact that any abstract framed surgery can be realized ambiently. Another is that framed immersions of n-spheres in S^m are regularly homotopic to immersions in S^{n+1} .

We first prove exactness at $\pi_n G$ in $(2)_k$. That $\phi_2 \bar{\omega}_2 = 0$ follows from $[6, \S 5.5]$, and the definition of $\bar{\omega}_2$ and $\bar{\phi}_2$. Let $[g] \in \pi_n G$, $g: S^n \to G_N$ and suppose $\bar{\phi}_2([g]) = 0$. Define $\bar{g}: S^n \times S^{N-1} \to S^{N-1}$ by $\bar{g}(x, y) = g(x)(y)$, $x \in S^n$, $y \in S^{N-1}$, and let $\Sigma = \bar{g}^{-1}(e)$, $e \in S^{N-1}$. We may assume that Σ is a framed n-submanifold of $S^n \times S^{N-1} \subseteq S^{n+N}$. In fact, since $\bar{\phi}_2([g]) = 0$, we may further assume that Σ is a homotopy sphere (see $[6, \S 4.7]$). By Theorem 6.4 of [5], Σ is regularly homotopic to a framed immersion (Σ, f) in S^m . Then $\bar{\omega}_2([\Sigma, f]) = [g]$.

Next, let us consider exactness at $I_f^{m,n}$. There is no problem in showing that $\bar{\omega}_2\bar{\partial}_2=0$. Suppose $[\Sigma,f,\mathfrak{F}]\!\in\!I_f^{m,n}$ and $\bar{\omega}_2([\Sigma,f,\mathfrak{F}])=0$. It follows from the definition of $\bar{\omega}_2$ and the exactness of the Kervaire-Milnor sequence that there is a π -manifold W and a framing of its stable normal bundle so that $\partial W=\Sigma$ and the framing restricted to Σ is essentially a suspension of \mathfrak{F} . But then we can use $[\mathfrak{5}]$ to obtain a framed immersion $(g,\mathfrak{G})\colon W\to S^m$ so that $g|\Sigma=f$ and $\mathfrak{G}|\Sigma=\mathfrak{F}$. Define $\gamma=\gamma(W,\mathfrak{G})\in P_{n+1}$ as in §4.5 of $[\mathfrak{6}]$. Then $\bar{\partial}_2(\gamma)=[\Sigma,f,\mathfrak{F}]$, because using $[\mathfrak{5}]$ we can allow in the definition of $\bar{\partial}_2$ not only framed imbeddings of W but also framed immersions.

This finishes our discussion of the exactness of $(2)_k$. Alternatively,

one could observe first that $I_f^{m,n} \approx I_f^n \approx \theta_f^n$ using [5], so that exactness follows from the exactness of the Kervaire-Milnor sequence.

The commutativity (up to sign) of $(4)_k$ is proved as in [6] and so by [6, §5.3], the exactness of $(3)_k$ will be established once we show that $\bar{\phi}_3\bar{\omega}_3 = 0$. But consider

If N > n, then j_1 is an isomorphism (proved similarly to Lemma 3.1), and so $\phi_3 \omega_3 = \phi_3 \omega_3 j_1^{-1} S = 0$.

REFERENCES

- 1. M. K. Agoston, Relative knots and tangential equivalences, Trans. Amer. Math. Soc. 137 (1969), 27-52.
- 2. A. Haefliger, Knotted (4k-1)-spheres in 6k-space, Ann. of Math. (2) 75 (1962), 452-466. MR 26 #3070.
- 3. ——, Differentiable embeddings of S^n in S^{n+q} for q>2, Ann. of Math. (2) 83 (1966), 402-436. MR 34 #2024.
 - 4. ——, Lissage des immersions. I, Topology 6 (1967), 221-239. MR 34 #8416.
- 5. M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980.
- 6. J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15-50. MR 31 #5211.
- 7. S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. MR 27 #2991.

Wesleyan University, Middletown, Connecticut 06457