
A CLASSIFICATION OF IMMERSED KNOTS

MAX K. AGOSTON

This paper in a sense completes the study begun in [6] and [3].

We shall make extensive use of the notation and results of [6] and

shall show that the group of immersed homotopy w-spheres in w-space

fits naturally into exact sequences similar to those of [6]. Alterna-

tively, one can look on this paper as giving geometric meaning to the

groups irnG and irn(G, SOq). (See also [4]. For additional information

about immersions see §4 of [3].) In §1 we give the necessary defini-

tions; the main results are stated in §2. We would like to thank the

referee for some useful observations.

1. Preliminaries. Throughout this paper all manifolds will be

C°°, compact, and oriented. All maps are transverse to any boundaries

and take boundaries to boundaries. If/: M"—>Wm is an immersion, we

orient the normal bundle of/, vj, by the equation

TM + vf = f*TW,

where rM, tw are the tangent bundles of M, W, respectively. The

boundary of M, dM, is oriented by the equation

S + TdM = tm | dM,

where £ is a line bundle of vectors orthogonal to dM with the vectors

pointing out from M oriented positively. —M denotes M with the

negative orientation. Given a vector bundle 77 over M we shall always

identify M with the zero-section of 77; also, we do not distinguish be-

tween the normal disk bundle of a submanifold and a tubular

neighborhood.

Next, we say that (/, JF): M"—*Wm is a framed immersion if/: M—*W

is an immersion and !F is a framing of 17, i.e., JF = (/1, • • • ,/,*-„) is an

ordered collection of orthogonal vector fields of vf (this is compatible

with [6] in case/ is an imbedding). Now let Mn and Wm be closed

manifolds (boundaries are excluded only for simplicity). Two immer-

sions /, g'.M-^W are ft-cobordant if there is an fe-cobordism F"+1

with dV=MVJ-M and an immersion H: V-+WX. [0, l] with

H\M=fX0 and H\ — M = gXl. Two framed immersions (J, 5),

(g, Q):M-^W are fc-cobordant if there is an /i-cobordism Vn+1 with

dV=M\J-M and a framed immersion (H, 3C): F->IFX [0, l] with

(H, 3C)\M=(f, SOXO and (H, 3C)| -M=(g, g)Xl. We use [M,f],
[M, f, ff] to denote the /s-cobordism class of /, (/, ff), respectively—
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the range W will always be clear from the context. Also, let us recall

the notion of regular homotopy between immersions (see [5]). Two

framed immersions (/, JF), (g, g):M—*W will be called regularly

homotopic if there is a 1-parameter family of framed immersions

(Ht, xi): M-*W with (H0, 3C0) = (/, ff) and (Hu 3d) = (g, g).
As usual, Dn will be the closed unit ball in Euclidean w-space Rn

with the natural orientation and Sn~l = dDn. Gn denotes the //-space

of maps of Sn~1—>Sn~1 of degree +1 and S0n will be the subspace of

orthogonal maps. The natural inclusion Rnt^Rn+l gives rise to inclu-

sions DnQDn+1, GnQG„+i, SOnQSOn+i. Let G = lim„^G„ and

5'O = lim„^.0O S0„.

2. The exact sequences. For the remainder of this paper we assume

that ra 2:5 and k=m — n^3. We define Im,n to be the set of A-cobordism

classes of immersed homotopy ra-spheres in Sm and LJ'n to be the set

of /s-cobordism classes of framed immersed homotopy ra-spheres in

Sm. There is an obvious operation of connected sum which makes

Im-n and Tj'n into abelian groups (see [2, §1.3 and §1.4]). Using [7]

it is easy to see that [2",/] = 0£Im'» (or [2», /, ff] = 0£if'") if and

only if 2" is the boundary of an (« + l)-disk Un+1 and there is an

immersion H: Un+l-^Dm+1 (or framed immersion (H, 3C): U"+1-^Dm+1)

so that H\ 2 =/ (or (H, X) 12 = (/, JF)).
Define groups Pn as follows:

Pn = Z, n = 0 (mod 4)

= Z2, n = 2 (mod 4)

= 0,        n odd.

In §3 we shall define homomorphisms w,-, <?», and di making the

following sequences exact:

Wl     m,n <Pl     m,n <?1 k)l     m-l,n-l

(l)t    •  ■  ■ —> TT,iSUk —* //     —»/       —> ir„_i50t —>// —* • • ■

m,n "2 02 32     m-l.n-1 "2
(2)*      ■••—*//       —» 7T»G —> P„ —> // —> Tn-lG —>   •   •   •

0)3 03 63 0)3

(3)*   • ■ • -►/*•" ->7rB(G,S0*) ->PB->/™~1-»-1->ir„_1(G,S0*) -»•••.

We also get a commutative (up to sign) diagram:

TnSOt -»-7r„G -«- Pn

(4)* 7rn+i(G,50*) i?* irn(G,SOk)

-Pn+1- / -► TTn-lSOk
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Next, let Imm'n (Im"/,n) be the group of regular homotopy classes

of (framed) immersions of Sn in Sm. The group operation is again the

connected sum in both cases. Then it follows from [5] that there are

natural isomorphisms Imm'n~irnVm,n~ir,l(SO, S0k) and Imf,n

~irnSOm~ir„SO. Finally, we also consider the groups Ckn and FC„

of isotopy classes of imbedding, respectively, framed imbeddings, of

Sn in Sm and the groups 9m-n and 6™'" of /j-cobordism classes of

imbedded, respectively, framed imbedded, homotopy w-spheres in Sm.

Collecting the results of [3], [6], and this paper we get a great many

interrelated exact sequences which we shall not bother to write out

here. In addition, there are natural suspension maps of the sequences

(l)k^>(l)k+N, 1=1, 2, 3 and ASsO, where we take the rear extensions of

framings as described in [6, §1.2].

We shall display two interesting diagrams of exact sequences which

are derived from standard diagram chasing:

Tn+l(Cr, Gk)

/ \

en+1-- ckn-- em,n—-en

(5) 'I I I II\*-V« n-f-1 m,n m,n n
I     -^ Im     -*• /    -*■ I

\      /
7T„(G, Gk)

|m,n_». Jm+l,n

/\      t \
(t)k     T„5*   =   TniSOk+u SOk) Tn-liSO*.!, SOi)   = Tn-lSk,

\ /
Jmm.n -►. Jmm+l,n

where   0»=0m+JV,n   and   In = fm+N.n   for   ^/>w.   Also,   observe   that

rj,n is independent of m.

In conclusion, we point out that this paper could have been extend-

ed to the case of "relative" immersed knots a la [l].

3. The maps w<, #,, 3;. In this section we shall define the maps

wit 4>i, and di- Let &>*, <£,-, and 6\ be defined as in [6] and letji:6m'n—*Im-n,

ji:9J>,n^rJl,n be the obvious maps which assign to each /2-cobordism

class of imbeddings, respectively, framed imbeddings, its correspond-

ing /z-cobordism class as an immersion, respectively, framed immer-
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sion. (It should be clear that 8m-n and 8f'n can be so interpreted. See

also [1].)

Define

«1  = J2M1, 02  = 02,
_ 0g
03 = composition of irn(G, SOk) —» xn(G, SO) —> P„,

d2 = j2d2, d3 = jid3.

Let [2«,/, ff]£//m'B and [JV», g]EIm-\ Define

^([Z-J.SF]) = [2»,/] £ /-■»,

where we identify the normal bundle va with the element in 7rn_iSOi

that it determines by the classification theorem of bundles over

spheres.

Finally we come to the maps co2 and aj3 which, together with the

exactness of (2)* at irnG and (3)* at irn(G, SOk), are really the heart

of this paper.

Lemma 3.1. 6?*&lf*,for N^2n+1.

Proof. Now all homotopy ra-spheres 2n imbed in SN and all immer-

sions/^—>5^ are regularly homotopic by [S]. A regular homotopy

also carries along the framing. Therefore j-i is onto. That j2 is one-to-

one follows from the fact that we may approximate regular homo-

topies by imbeddings using Whitney's theorem.

Thus we can define

- ...    ">.» "^     N.njz      N.n &2
oi2 = composition of//     —*If     -+6/     —>irnG,

where iV^2ra+l.

Now let [2n,/] £/'"•". It is well known (see [7]) that2n is obtained

by glueing two ra-disks D0 and Di together via a diffeomorphism of

their boundaries. We may then take framings £F< of vj\ Dit i = 0, 1, and

let ai'.DiXDk—>vf\Di be imbeddings satisfying at(x, 0)=x, xEDi

and dai(&i) =3:,-, where Si is the pull-back by the projection DiXDk

-^>Dh of a positive frame at 0£D4. We can arrange it so that a\(x, y)

= a0(a:, n(x)y), xEdD0, yEDk, for some p,:dD0—:>SOk. (Compare [6,

§3.3].) We shall use the notation 5i\dD0=p,50\dD0 to describe this

situation. Now assume that f\ Do is an imbedding and that/(2— Do)

does not meet/(Do). Let /' be the composition of 2-L>Sm—>Sm+N, for

some N>n, and let S'( he the framing of Vf\Di which is the rear ex-
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tension of 'Si. Next, move/' into an imbedding g:2—>Sm+N via a regu-

lar homotopy ht satisfying h,\Do=f and ht(Z — Do)l^\ht(Do) = 0.

h% carries along the framing JFj, so that we get a framing g* of vg\ Di

with g1|d.D0 = Jag0|dZ?0, where p is the composition of dDo-^SOk

-^SOk+N- If we apply the construction of [6, §3.3], to (2, g, Qi), we

get an element [X]£?rn(G, SO*), i.e., if we let u:Sm+N-g(S)-^Sk+N-1

be a homotopy inverse of y—>ao(xo, y),XoGF>0 with ua0(x, y)=y for all

xGDo, then X:Di—>£?*+# is given by X(x)(y) =m«i(x, y), x£A,

yG5*+^-1. Define

«»([2,/]) = [X].

This finishes the definitions of all the maps and it is easy to see,

using [6], that they are well defined homomorphisms.

4. Exactness. The proof of exactness of (l)*, (2)k, and (3)k is very

similar to the corresponding proofs given in [6]. In general, the only

difference is that here we have immersions instead of imbeddings.

Anyone who understands [6] can easily make the appropriate trans-

lations. We shall, however, outline a proof of exactness in those

places that differ from the corresponding ones in [6]. One essential

difference is the fact that any abstract framed surgery can be realized

ambiently. Another is that framed immersions of w-spheres in Sm are

regularly homotopic to immersions in S"+1.

We first prove exactness at 7r„G in (2)k. That $2W2 = 0 follows from

[6, §5.5], and the definition of a>2 and fi. Let [g]£7r„G, g:S"-^GN and

suppose fa([g])=0. Define g:S"XSN-1-^Sff-1 by g(x, y)=g(x)(y),

xES", yESN~\ and let 2=g~1(e), eES"-1. We may assume that

2 is a framed re-submanifold of SnXSN-1QSn+N. In fact, since

<?2([g])=0, we may further assume that 2 is a homotopy sphere

(see [6, §4.7]). By Theorem 6.4 of [S], 2 is regularly homotopic

to a framed immersion (2,/) in Sm. Then a>2([2,/]) = [g].

Next, let us consider exactness at 7™'n. There is no problem in

showing that <i2d2 = 0. Suppose [2, /, ff]ei?'B and w2([2,/, fj]) =0. It

follows from the definition of on and the exactness of the Kervaire-

Milnor sequence that there is a 7r-manifold W and a framing of its

stable normal bundle so that d W = 2 and the framing restricted to 2

is essentially a suspension of fj. But then we can use [5] to obtain a

framed immersion (g, g): W—>5m so that g|2=/ and g|2=3r. Define

7=7(fF, g)GP„+i as in §4.5 of [6]. Then_d2(7) = [2, /, S], because
using [5] we can allow in the definition of d2 not only framed imbed-

dings of W but also framed immersions.

This finishes our discussion of the exactness of (2)*. Alternatively,
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one could observe first that If'n'«T}«0" using [5], so that exactness

follows from the exactness of the Kervaire-Milnor sequence.

The commutativity (up to sign) of (4)k is proved as in [6] and so by

[6, §5.3], the exactness of (3)k will be established once we show that

03^3 = 0. But consider

a*

/•»■ » ——^ Tn(G, SOk)

s \        *»

I-   !\
gn+N.n -„      Xn(G50) —    P„.

If N>n, then ji is an isomorphism (proved similarly to Lemma

3.1), and so <pzU>i=<p3O)3JiiS=0.
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