POSITIVE LENGTH BUT ZERO ANALYTIC CAPACITY

JOHN GARNETT

Let E be a subset of the complex plane. For m positive define $A(E, m) = \{f: f \text{ is analytic off a compact subset of } E, f(\infty) = 0, ||f|| \leq m \}.$

For $f \in A(E, m)$, the derivative at ∞ of f is its first Laurent coefficient $f'(\infty) = \lim_{z \to \infty} zf(z)$. The analytic capacity of E is defined as

$$\gamma(E) = \sup\{ |f'(\infty)| : f \in A(E, 1) \}.$$

Of the several uses of analytic capacity we only mention one: that $\gamma(E) = 0$ if and only if every bounded analytic function on the complement of E is constant.

The length, or one-dimensional Hausdorff measure, of a set E is $l(E) = \lim_{\rho \to 0} \Lambda_{\rho}(E)$, where

$$\Lambda_{\rho}(E) = \inf \{ \sum \delta_{j} \colon E \subset \bigcup \Delta(a_{j}, \delta_{j}), \, \delta_{j} \leq \rho \}$$

and $\Delta(a_j, \delta_j)$ is the disc $\{|z-a_j| < \delta_j\}$. When E lies on a rectifiable curve, this notion is equivalent to that of the (outer) arc length of E.

A classical theorem of Painlevé is that $\gamma(E) = 0$ whenever l(E) = 0. When E lies on a sufficiently smooth curve, $\gamma(E)$ and l(E) can only vanish simultaneously [2]. On the other hand, A. G. Vituškin [3] has given an example of a set E with l(E) > 0 but $\gamma(E) = 0$. However Vituškin's proof is quite complicated and contains many typographical errors. We give a simpler counterexample, and compare ours to Vituškin's.

1. The example. The example is the planar Cantor set obtained by taking the "corner quarters." Let $K = \bigcap_{n=0}^{\infty} E_n$ where E_0 is the unit square, E_n consists of 4^n squares of side 4^{-n} , and each component of E_n contains four components of E_{n+1} , these being the four corner squares of side 4^{-n-1} . The components of E_n will be indexed as $E_{n,j}$, $1 \le j \le 4^n$. Set $K_{n,j} = K \cap E_{n,j}$.

It is obvious that $\Lambda(K) = 2^{-1/2}$.

Our proof that $\gamma(K) = 0$ resembles Vitushkin's argument but is simpler because it takes advantage of the homogeneity of the set K. That is, $K_{n,j}$ is geometrically similar to K, so that one can make linear changes of variable, and so that $\gamma(K_{n,j}) = 4^{-n}\gamma(K)$.

Presented to the Society, August 28, 1969 under the title *Positive length but zero capacity*; received by the editors June 9, 1969.

Let $f \in A(K, 1)$, and assuming $\gamma(K) > 0$, suppose $a = f'(\infty)$ is real and positive. For $z \notin K$, let $\Gamma_{n,j}$ be a cycle with winding number one about $K_{n,j}$ but zero about $K - K_{n,j}$ and about z, and set

$$f_{n,j}(z) = \frac{-1}{2\pi i} \int_{\Gamma_{n,j}} \frac{f(w)dw}{w-z} .$$

LEMMA 1. (a) $\sum_{j=1}^{4^n} f_{n,j} = f$.

(b) There is a constant M such that $f_{n,j} \in A(K_{n,j}, M)$.

(c) $|f'_{n,i}(\infty)| \leq M4^{-n}\gamma(K)$.

PROOF. The Cauchy integral theorem yields (a) as well as the fact that $f_{n,j}$ is analytic off $K_{n,j}$. If V is a square concentric with $E_{n,j}$ but three times as large, then for z near $K_{n,j}$ we have

$$f(z) - f_{n,j}(z) = \frac{1}{2\pi i} \int_{AV} \frac{f(w)dw}{w - z},$$

so that $|f_{n,j}(x)| \le 1 + 6/\pi$. (c) follows directly from (b). Set $a_{n,j} = f'_{n,j}(\infty)$.

LEMMA 2. Let

$$h_{n,j}(z) = a_{n,j}4^{2n} \int \int_{B_{n,j}} \frac{dxdy}{x + iy - z}$$

for $z \in E_{n,j}$, and set $h_n = \sum_{j=1}^{4^n} h_{n,j}$. Then the h_n are uniformly bounded.

PROOF. A well-known estimate using polar coordinates and part (c) of Lemma 1 yield the estimate $|h_{n,j}(z)| \leq M\gamma(K) \cdot 2^{1/2}\pi = M_1$. Also $h'_{n,j}(\infty) = -a_{n,j}$. If $g_{n,j} = f_{n,j} + h_{n,j}$; then $|g_{n,j}| \leq M + M_1 = M_2$ and $g_{n,j}$ vanishes twice at ∞ . Two applications of Schwarz's lemma then give

$$|g_{n,j}(z)| \leq \frac{M_2 4^{-2n}}{(\operatorname{dist}(z, E_{n,j}))^2}.$$

As $f = \sum f_{n,j}$, we must show $\sum_{j=1}^{4^n} g_{n,j}$ is uniformly bounded. Now for z close to E_{n,j_0} we have

$$\sup_{z \in E_n} \sum_{j} |g_{n,j}(z)| \leq \sup_{z \in E_n} \left(1 + \sum_{j \neq j_0} \frac{M_2 4^{-2n}}{(\operatorname{dist}(z, E_{n,j})^2)}\right) = B_n.$$

To estimate B_n , compare the 4^{n-1} terms corresponding to the 4^{n-1} squares in the same component of E_1 as z with the supremum B_{n-1} , and estimate the remaining terms by $4M_24^{-2n-1}$. This gives $B_n \leq B_{n-1} + 3 \cdot 4^{n-1} \cdot 4M_24^{-2(n-1)}$, so that $\lim B_n < \infty$, and the h_n are uniformly bounded.

Actually one can show that $f = -\lim_n h_n$, but we will not need this. We finish the proof by showing that the case $a_{n,j} = a4^{-n}$ for all j is impossible, but that otherwise Lemma 1(c) is contradicted.

LEMMA 3. For some n and j, $a_{n,j} \neq a4^{-n}$.

PROOF. Assume $a_{n,j} = a4^{-n}$ for all n and j. Then $A_n = a^{-1} \operatorname{Real}(h_n(0))$ is bounded. Now

$$A_n = 4^n \sum_{j=1}^{4^n} \int \int_{B_{n,j}} \frac{x \, dx dy}{x^2 + y^2} \, \cdot$$

But

$$4^{n} \sum_{B_{n,j} \subset \{x > \frac{1}{2}\}} \int \int_{B_{n,j}} \frac{x \, dx dy}{x^{2} + y^{2}} \ge 4^{-2}$$

while the sum of the 4^{n-1} lower left integrals is A_{n-1} . Thus $A_n \ge A_{n-1} + 4^{-2}$, a contradiction.

LEMMA 4. For any $\epsilon > 0$ and any M > 0, there exists $\delta > 0$ such that for any $f \in A(K, M)$ with $|f'(\infty)| \ge \epsilon$, we have

$$\sup_{n,j} 4^n |a_{n,j}| \geq (1+\delta) |f'(\infty)|.$$

PROOF. Suppose not. Then for $\delta_k \searrow 0$ there exists $f_k \in A(K, M)$ with $|f'_k(\infty)| \ge \epsilon$ such that (giving $a_{n,j}^{(k)}$ its obvious meaning)

$$\left| a_{n,i}^{(k)} \right| \leq 4^{-n} (1 + \delta_k) \left| f_k'(\infty) \right|.$$

A subsequence of $\{f_k\}$ then converges to $f \in A(K, M)$ with $|f'(\infty)| \ge \epsilon$ and with $|a_{n,j}| \le 4^{-n} |f'(\infty)|$. This means $a_{n,j} = 4^{-n} f'(\infty)$, which is impossible by Lemma 3.

Finally, to show $\gamma(K) = 0$, let $f \in A(K, 1)$ with $a = f'(\infty) > 0$. Choose n_1 and j_1 such that by Lemma 4 (with $\epsilon = a$ and M as in Lemma 1), $|a_{n_1,j_1}| \ge a(1+\delta)4^{-n_1}$. Since K_{n_1,j_1} is geometrically similar to K we can apply Lemma 4 to f_{n_1,j_1} . Continuing, we obtain a sequence (n_k, j_k) with $|a_{n_k,j_k}| \ge a(1+\delta)^k 4^{-n_k}$. This contradicts Lemma 1(c).

2. Comparison with Vitushkin's example. Take a nondecreasing sequence of positive integers n_j with $n_1 \ge 2$. Set $E_0 = [0, 1]$, $E_1 = \bigcup_{k=1}^{n_1} (\{1/k\} \times [0, 1/n_1])$. Obtain E_{k+1} from E_k by repeating this process with each interval in E_k but using n_{k+1} . Set $E = \lim_k E_k$. For any choice of n_i , l(E) is positive. Vitushkin [3] shows that $\gamma(E) = 0$

- if $\lim_{j\to\infty} n_j = \infty$. Setting $r_k = \prod_{j=1}^k n_j^{-1}$, we see that E_k consists of pairwise disjoint intervals of length r_k . Replacing each interval by a rectangle of sides r_k and r_{k+1} , we have $E = \bigcap E_k$. Then the reasoning of §1 above shows that $\gamma(E) = 0$ if $n_j = m$ for all sufficiently large indices j.
- 3. **Remarks.** It is interesting to compare our example with the known results for similar Cantor sets. Let C_r (0 < r < 1) be the Cantor set on [0, 1] obtained by removing rths, and let $K_r = C_r \times C_r$. Thus our set is $K_{1/2}$. For r > 1/2, $l(K_r) = 0$, and thus $\gamma(K_r) = 0$. For r < 1/2, Denjoy [1] proved that $\gamma(K_r) > 0$. Indeed, Denjoy constructed a function in $A(K_r, 1)$ which extended continuously to the entire plane. In other words, if r < 1/2, K_r has positive continuous analytic capacity: $\alpha(K_r) > 0$. It was also known [4], that $\alpha(K_{1/2}) = 0$, because $l(K_{1/2}) < \infty$. Thus our example completes the study of analytic capacity for such Cantor sets.

REFERENCES

- 1. A. Denjoy, Sur la continuité des fonctions analytiques singulièries, Bull. Soc. Math. France 60 (1932), 27-105.
- 2. L. D. Ivanov, On Denjoy's conjecture, Uspehi Mat. Nauk 18 (1963), no. 4 (112), 147-149. (Russian) MR 28 #236.
- 3. A. G. Vitushkin, Example of a set of positive length but of zero analytic capacity, Dokl. Akad. Nauk SSSR 127 (1959), 246-249. (Russian) MR 22 #9607.
- 4. L. Zalcman, Analytic capacity and rational approximation, Lecture notes in Math., no. 50, Springer-Verlag, Berlin, 1968. MR 37 #3018.

University of California, Los Angeles