
POSITIVE LENGTH BUT ZERO ANALYTIC CAPACITY

JOHN GARNETT

Let £ be a subset of the complex plane. For m positive define

A(E, m) = {/: /is analytic off a compact subset of E, /(°°) = 0, |[/|| ^m\.

For fEA(E, m), the derivative at °° of/is its first Laurent coefficient

y(oo) =limz.,00 zf(z). The analytic capacity of E is defined as

y(E) = sup{|/'(oo)i :fEA(E, 1)}.

Of the several uses of analytic capacity we only mention one: that

y(E) =0 if and only if every bounded analytic function on the com-

plement of E is constant.

The length, or one-dimensional Hausdorff measure, of a set E is

1(E) =limp_0 A„(£), where

A,(E) = inf { £ Sj: ECU A(aj, Sj), Sj ̂  p]

and A (a,, 5;) is the disc {|z —cy| <5j}. When E lies on a rectifiable

curve, this notion is equivalent to that of the (outer) arc length of E.

A classical theorem of Painleve is that y(E) =0 whenever 1(E) =0.

When E lies on a sufficiently smooth curve, y(E) and 1(E) can only

vanish simultaneously [2]. On the other hand, A. G. Vituskin [3]

has given an example of a set E with 1(E) > 0 but y(E) = 0. However

Vituskin's proof is quite complicated and contains many typo-

graphical errors. We give a simpler counterexample, and compare

ours to Vituskin's.

1. The example. The example is the planar Cantor set obtained by

taking the "corner quarters." Let K = f]^0 En where EQ is the unit

square, En consists of 4" squares of side 4~", and each component of

En contains four components of -E„+i, these being the four corner

squares of side 4-"-1. The components of En will be indexed as En,j,

lgj^4". Set Kn,j = Kr\En,j.

It is obvious that A(K) = 2"1'2.

Our proof that y(K)=0 resembles Vitushkin's argument but is

simpler because it takes advantage of the homogeneity of the set K.

That is, Knj is geometrically similar to K, so that one can make

linear changes of variable, and so that y(Kn,j) =4:~ny(K).
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Let/E-4(A, 1), and assuming 7(A) >0, suppose a =/'(°°) is real

and positive. For z(£K, let Tnj be a cycle with winding number one

about Knj but zero about K—Kn,j and about z, and set

— 1  r     f(w)dw

2m J r„ ,■   w — z

Lemma 1. (a) £*" 1 /»./=/•

(b) There is a constant M such that fn,jEA(Kn,j, M).

(c) \f'nJ(co)\^M4-»y(K).

Proof. The Cauchy integral theorem yields (a) as well as the fact

that/„,,- is analytic off Knj. If V is a square concentric with E„j but

three times as large, then for z near Kn,j we have

/(z) ~ /. j0») = —        -'
2ir%J sv   w — z

so that I/»,,•(*)I ̂ 1+6/ir. (c) follows directly from (b).

Set an,j =/ij(°°).

Lemma 2. Let
C C dxdy

hn,j(z)   =  fl.j4»» /
JJE     # + &y — z

/or zGAn,y, and set hn— X!/=i ^»./- Then the hn are uniformly bounded.

Proof. A well-known estimate using polar coordinates and part

(c) of Lemma 1 yield the estimate |A„,y(z)| ^My(K)-21'27r = Mi.

Also h'„j(<») = — an,j. If gn.j=fn,i+hn,j; then \gn.j\ ^M+Mi = M2

and gn.j vanishes twice at °°. Two applications of Schwarz's lemma

then give
. Mi4-2n

(distfz, En,j))2

As/= ^2fn,j, we must show 23*" 1 Snj is uniformly bounded. Now for

z close to E„,j0 we have

,>,-, (dist(z, £„,y)7

To estimate 5„, compare the 4n_1 terms corresponding to the 4n_1

squares in the same component of £1 as z with the supremum B„-i,

and estimate the remaining terms by 4.M24~2n~1. This gives Bn^Bn-i

+3.4»-i.4Af24-«n-i)i so that lim Bn< °°, and the h„ are uniformly
bounded.
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Actually one can show that /= — lim„ hn, but we will not need this.

We finish the proof by showing that the case an,j = aA~n for all j is

impossible, but that otherwise Lemma 1(c) is contradicted.

Lemma 3. For some n and j, an,jyiLa\~n.

Proof. Assume an,y = a4-n for all wand j. Then^4„ = a_1 Real(An(0))

is bounded. Now

4.-«■£//  4—•,=i J J e   . xl + y2
n.j

But

4b    E     rr    ±**_^

e Mx>i)  J J b   . x2 + y2
n.J n,l

while the sum of the 4n_1 lower left integrals is An~i- Thus An^An-i

+4~2, a contradiction.

Lemma 4. For any e > 0 and any M>0, there exists S > 0 such that for

any fEA(K, M) with |/'(°°)| ^«, we have

sup 4" | an.j\   ^ (1+8) IH*) | .
n.J

Proof. Suppose not. Then for 5*\0 there exists/* EA (K, M) with

|/*(°°)| =€ such that (giving a™ its obvious meaning)

\ank,]\   £4~"(1+«*)!//(*) I-

A subsequence of {/*} then converges to fEA(K, M) with |/'(°°)|

^e and with |a„,y| ^4_B|/'(oo)|. This means an,j = i~nf'(<x>), which

is impossible by Lemma 3.

Finally, to show y (K) = 0, let fEA (K, 1) with a =/'(«>) >0. Choose

wi and ji such that by Lemma 4 (with e = a and M as in Lemma 1),

| ani,h\ =a(l+5)4_ni. Since Kni,jt is geometrically similar to K we can

apply Lemma 4 to fni,h- Continuing, we obtain a sequence (nk, jk)

with |ant.yt| = a(l+h)kArn'!. This contradicts Lemma 1(c).

2. Comparison with Vitushkin's example. Take a nondecreasing

sequence of positive integers »,- with Wi^2. Set E0 = [0, l], Ex

= UnLi({l/fe} X[0, l/«i]). Obtain Ek+i from Ek by repeating this

process with each interval in Ek but using nk+i. Set E = \imk Ek. For

any choice of «,-, 1(E) is positive. Vitushkin [3] shows that y(E) =0
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if limy.,,*, Wy= oo. Setting rk= XI*-i %-1i we see that Ek consists of

pairwise disjoint intervals of length rk. Replacing each interval by a

rectangle of sides rk and rk+i, we have E — C\Ek. Then the reasoning of

§1 above shows that 7(A) = 0 if »y = m for all sufficiently large indices/.

3. Remarks. It is interesting to compare our example with the

known results for similar Cantor sets. Let CT (0O<l) be the Cantor

set on [0, l] obtained by removing rths, and let K, = CTXCr. Thus

our set is Ai/2. For r > 1/2, l(Kr) = 0, and thus 7(Ar) = 0. For r < 1/2,

Denjoy [l] proved that 7(Ar)>0. Indeed, Denjoy constructed a

function in ^4(Ar, 1) which extended continuously to the entire plane.

In other words, if r< 1/2, Ar has positive continuous analytic capac-

ity: a(Ar)>0. It was also known [4], that a(Ai/2) = 0, because

l(Ki/i) < oo. Thus our example completes the study of analytic capac-

ity for such Cantor sets.
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