A NONEMBEDDING THEOREM FOR FINITE GROUPS

ERNEST L. STITZINGER

ABSTRACT. Let N be the class of nilpotent groups with the following properties:

(1) The center of N, $Z_{\perp}(N)$ is of prime order.

(2) There exists an abelian characteristic subgroup A of N such that $Z_1(N) \subset A \subseteq Z_2(N)$ where $Z_2(N)$ is the second term in the upper central series of N.

The main result shown is the following: If $N \in \mathfrak{X}$, then N cannot be an invariant subgroup contained in the Frattini subgroup of a finite group.

Hobby has shown in [2] that a nonabelian group whose center is cyclic can not be the Frattini subgroup of any p-group. Chao in [1] has shown that a nonabelian group whose center is of prime order cannot be embedded in the derived group of any nilpotent group. The result obtained here is of a similar nature. All groups considered here are finite.

DEFINITION. Let \mathfrak{X} be the class of nilpotent groups N which have the following properties:

(1) The center of N, $Z_1(N)$, is of prime order.

(2) There exists an abelian characteristic subgroup A of N such that $Z_1(N) \subset A \subseteq Z_2(N)$ where $Z_2(N)$ is the second term in the upper central series of N.

If N is an arbitrary group and N' is the derived group of N, then $N' \cap Z_2(N)$ is an abelian characteristic subgroup of N. If N is nilpotent and $N' \cap Z_2(N) \subseteq Z_1(N)$, then $N' \subseteq Z_1(N)$ and N has nilpotent length 1 or 2. Hence if N has nilpotent length greater than 2 and $Z_1(N)$ is of prime order, then $N \in \mathfrak{X}$.

The main result shown here is the following

THEOREM. If $N \in \mathfrak{X}$, then N can not be an invariant subgroup contained in the Frattini subgroup of any group.

Clearly if the center of N is of prime order, then each term in the upper central series of N is a p-group. Futhermore $Z_2(N)/Z_1(N)$ is elementary abelian. If $N \in \mathfrak{X}$ and A is as in the definition, then $\overline{A} = A/Z_1(N)$ is elementary abelian and is therefore the direct product of cyclic groups of order p, denoted by ${}_1C_p, \cdots, {}_kC_p$. In the

Received by the editors September 22, 1969.

A MS Subject Classifications. Primary 2040, 2025.

Key Words and Phrases. Frattini subgroup.

natural way, \overline{A} will be considered as a k-dimensional vector space over F_p , the field of p elements. We denote by η the natural mapping from A onto \overline{A} and by $Inn_A(N)$ the group of automorphisms of A induced by elements of N. If N is invariant in G, then it will be shown that $Inn_A(N)$ has a complement in $Inn_A(G)$.

For notational convenience let $Z = Z_1(N)$. Let $S = \{\sigma \in \operatorname{Aut}(A); \sigma(a)a^{-1} \in Z \text{ for all } a \in A, \sigma(z) = z \text{ for all } z \in Z\}$. S is a subgroup of Aut(A) and Inn_A(N) is a subgroup of S.

LEMMA 1. The set S with operations of composition and scaler multiplication defined by $r\rho = \rho^r$ for $r \in F_p$ and $\rho \in S$ is a vector space over F_p and dim $S = \dim \overline{A}$. $\operatorname{Inn}_A(N)$ is a subspace of S.

PROOF. For $\sigma \in S$, let f_{σ} be the mapping from \overline{A} into Z defined by $f_{\sigma}(\overline{a}) = \sigma(a)a^{-1}$ where $a \in A$ such that $\eta(a) = \overline{a}$. It is easily verified that $f_{\sigma}(\overline{a})$ is independent of the choice of a and that $f_{\sigma} \in \operatorname{Hom}_{F_{p}}(\overline{A}, Z)$. For $f \in \operatorname{Hom}_{F_{p}}(\overline{A}, Z)$, let σ_{f} be the mapping from A into A defined by $\sigma_{f}(a) = f(\overline{a})a$ where $\overline{a} = \eta(a)$. One verifies that $\sigma_{f} \in S$. Define θ to be the mapping from S into $\operatorname{Hom}_{F_{p}}(\overline{A}, Z)$ defined by $\theta(\sigma) = f_{\sigma}$ and τ to be the mapping from $\operatorname{Hom}_{F_{p}}(\overline{A}, Z)$ into S defined by $\tau(f) = \sigma_{f}$. Then θ is a vector space isomorphism with inverse τ . Therefore $S \cong \operatorname{Hom}_{F_{p}}(\overline{A}, Z) = \overline{A}^{*} \cong \overline{A}$, where \overline{A}^{*} is the dual of \overline{A} . Clearly $\operatorname{Inn}_{A}(N)$ is a subspace of S.

LEMMA 2. $Inn_A(N) = S$.

PROOF. For $n \in N$, let σ_n be the automorphism of A induced by n. If $\bar{a} \in A$ is annihilated by $\theta(\operatorname{Inn}_A(N))$, then $f_{\sigma_n}(\bar{a}) = 1$ for all $n \in N$. Let $a \in A$ such that $\eta(a) = \bar{a}$. Then $nan^{-1}a^{-1} = 1$ for all $n \in N$ and therefore $a \in Z$. Thus \bar{a} is the identity of \overline{A} and $\operatorname{Inn}_A(N) = S$.

Let z be a generator of Z, $\overline{x_i}$ be a generator of ${}_iC_p$ and $x_i \in A$ such that $\eta(x_i) = \overline{x_i}$ for $i = 1, \dots, k$. The ordering of the indices in the decomposition of \overline{A} , the choice of $\overline{x_i}$ and x_i will be considered as fixed. The representation of $a = x_1^{a_1} \cdots x_k^{a_k} z^s$, a_1, \dots, a_k , $s \in F_p$ is easily seen to be unique.

We now find a particular basis for $S = Inn_A(N)$. Define, for $j=1, \dots, k$, the mapping e_j from A into A by

$$e_j(x_1^{a_1}\cdot\cdot\cdot x_k^{a_k}z^{s}) = x_1^{a_1}\cdot\cdot\cdot x_k^{a_k}z^{(s+a_j)}.$$

Since each $a \in A$ is uniquely expressible in the form indicated, each e_j is well defined. One can then show that the set e_1, \dots, e_k is a basis for S.

LEMMA 3. Let $N \in \mathfrak{X}$ and N be invariant in G. Then $\operatorname{Inn}_A(N)$ is complemented in $\operatorname{Inn}_A(G)$.

PROOF. Let $M = \{B \in \operatorname{Inn}_A(G); B(x_i) = x_1^{a_{1i}} \cdots x_k^{a_{ki}} \text{ for } i = 1, \cdots, k \text{ where } a_{1i}, \cdots, a_{ki} \in F_p\}$. Since A is abelian, M is a subgroup of $\operatorname{Inn}_A(G)$. Now let $R \in \operatorname{Inn}_A(G)$. Then $R(x_i) = x_1^{a_{1i}} \cdots x_k^{a_{ki}} z^{s_i}$ for $i = 1, \cdots, k$ and $R(z) = z^s$. Let $t_i \in F_p$ such that $s_i + t_i s = 0$ for $i = 1, \cdots, k$. Then $Re_1^{t_1} \cdots e_k^{t_k} e_1^{-t_1} \cdots e_k^{-t_k} = R$ and, using Lemma 2, $Re^{t_1} \cdots e_k^{t_k} \in M$ and $e^{-t_1} \cdots e^{-t_k} \in S$. Hence $\operatorname{Inn}_A(G) = \operatorname{Inn}_A(N) \cdot M$ and since $M \cap \operatorname{Inn}_A(N)$ clearly equals the identity automorphism of A, M complements $\operatorname{Inn}_A(N)$ in $\operatorname{Inn}_A(G)$.

PROOF OF THEOREM. Suppose $N \in \mathfrak{X}$ and that G is a group such that N is invariant in G and $N \subseteq \phi(G)$ where $\phi(G)$ denotes the Frattini subgroup of G. Let f be the homomorphism which assigns to each element of G the automorphism which it induces in A. Then

$$\operatorname{Inn}_A(N) = f(N) \subseteq f(\phi(G)) \subseteq \phi(f(G)) = \phi(\operatorname{Inn}_A(G)).$$

However, by Lemma 3, $Inn_A(N)$ is complemented in $Inn_A(G)$. This contradiction establishes the result.

COROLLARY. A nilpotent group of length greater than 2 whose center is of prime order cannot be an invariant subgroup contained in the Frattini subgroup of any group.

References

1. C. Y. Chao, A theorem of nilpotent groups, Proc. Amer. Math. Soc. 19 (1968), 959-960. MR 37 #5295.

2. C. Hobby, The Frattini subgroup of a p-group, Pacific J. Math. 10 (1960), 209-212. MR 22 #4780.

North Carolina State University, Raleigh, North Carolina 27607