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Abstract. A set 5 in a linear space is said to have the three-

point convexity property Pt iff for each triple of points x, y, z of S, at

least one of the segments xy, xz, yz is a subset of 5. It is proved that

if 5 is a compact set in Euclidean space of dimension at least three

with at least one point interior to its convex kernel and if the set of

points of local nonconvexity of 5 is interior to its convex hull, then

5 has property P% iff it is the union of two convex sets.

Introduction. Property P3 has been defined and investigated by

Valentine for two-dimensional sets [3] and in finite-dimensional

spaces [5]. A set 5 in a linear space is said to have the three-point

convexity properly P3 iff for each triple of points x, y,zES, at least one

of the segments xy, xz, yz is a subset of 5. Although every set which is

the union of two convex sets has property P3, property P3 alone does

not characterize such sets, as the example of a five-pointed star

shows. Valentine [3] has shown that in E2 a closed set having prop-

erty P3 can be expressed as the union of three or fewer convex sets,

and that the number three is best in this case. It is shown in this

paper that under certain conditions a set in Euclidean space of

dimension three (or higher) is the union of two convex sets if and only

if it has property P3. McKinney [2] has shown that if 5 is a closed set

in a topological linear space, then 5 is the union of two convex sets if

and only if it has the property that for any cyclically ordered w-tuple

(n odd) of points of S, at least one of the segments connecting con-

secutive points is a subset of 5. (This property implies property P3.)

Marr and Stamey [l ] also have considered a property stronger than

property P3 which implies that 5 is the union of two convex sets.

Preliminary definitions and results. A point x of a set S in En is

called a point of local nonconvexity of S if for every neighborhood N of

x there exists a pair of points u, vESC\N such that the segment uv is

not a subset of S. The convex kernel of the set 5 will be denoted by K,

and the set of points of local nonconvexity of 5 will be denoted by Q.

The boundary operator in En will be denoted by "bd", "interior" by

"int", "closure" by "cl", and "convex hull" by "conv".

Theorem 1 (Valentine [5]). Let S be a closed connected set having
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property Ps in a topological linear space. Then the set of points of local

nonconvexity of S is a subset of the boundary of the convex kernel of S.

The proof of the main theorem of this paper is based on the follow-

ing definition and theorem.

Definition. A set M in En is said to be a closed m-dimensional

manifold if M is a compact connected set, and if for each e>0 each

point xEM is interior to an open set M(x) in En, of diameter less

than e, such that Mf\M(x) is homeomorphic to the unit ball in Em.

Theorem 2 (Valentine [5]). Let S be a compact set in En having

property P3. If the set Q of points of local nonconvexity if S is contained

in the interior of the convex hull of S, and if the convex kernel K of S has

interior points, then Q can be expressed as a finite union of disjoint closed

(n — 2) -dimensional manifolds.

Main Theorem. The principal result of this paper is the following.

Theorem. Let S be a compact set in E„ (n = 3) having property P3.

If the set Q of points of local nonconvexity of S is contained in the interior

of the convex hull of S, and if the convex kernel K of S has interior points,

then S can be expressed as the union of two convex sets.

Proof. First we establish the theorem for E3. We construct two

sets whose union is the set S, and show by a series of lemmas that

these two sets are convex.

If 5 satisfies the hypotheses of the Main Theorem, then by

Theorem 2, Q = \JT-i Af,-, where each Mi is a closed Jordan curve, and

MiC\Mj = 0 for i^j. By Theorem 1, each M( is embedded in bd K,

and moreover, bd K is topologically equivalent to a 2-sphere, so by

the Jordan Curve Theorem, bd K — Mi = Ai[UBi (disjoint), where

cl Ai(~\clBi = Mi, for each i. If we define R (for red) as the set of all

points x of bd K — Q such that the set {i:xEAt} has an even number

of integers in it, and G (for green) as the set of all points x of bd K — Q

such that the set {i:xEA(} has an odd number of integers in it, then

bd K-Q = R\JG, and furthermore, c\RC\c\ G = Q.

Since int Kj*0, we can choose a point w£int K. For any point

tEEg—K, utC\bd K contains a unique point, which we define to be

the projection of the point t onto bd K with respect to u.

Lemma 1. The projection of a point tES—K onto bd K cannot be a

point of local nonconvexity of S.

Proof. Since tES and uE'mt K, if yEut and yr^t, then y£int S
and hence y(£ Q.
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Therefore, if A is the set of all points ol S — K which have projec-

tions in R, and B is the set of all points of S — K which have projec-

tions in G, Lemma 1 implies that S = KKJAVJB (disjoint). It remains

only to be shown that KVJA and KXJB are convex.

Lemma 2. If aEA and bEB, then the segment ab contains at least one

point either of K or of the complement of S.

Proof. Assume, to the contrary, that abES—K. Then as a point

moves continuously from 0 to 6 along ab, its projection onto bd K is

defined and moves from R to G in a continuous motion, and hence at

least once crosses Q = cl Rf^cl G, contradicting Lemma 1.

Lemma 3. If x and y are points of S, and uE'mt K, then the interior

of the triangle con\(u, x, y) contains at most one point of Q.

Proof. Assume that q, g'Gint conv(w, x, y) with q, q'EQ, and that

qy^q'. Then if the segment qq' is extended, it will intersect ux or uy.

Assume then, that for some tEux, we have q'Eql- Since xES and

w£int K, it follows that tEint S, and since qEK, we have g'Gint S,

which is impossible by the definition of Q.

We can complete the proof of the Main Theorem by showing that

KSJA is convex. Let x, yEKKJA, and consider three cases.

Case 1. Assumex,yEK. Then xyEKE(K\JA).

Case 2. Assume xEK and yEA. Then xyES. If xyC^By^O, then

Lemma 2 would imply the existence of a point of B between two

points of K on xy, which is impossible. So xy(~\B = 0, and xyEK\JA.

Case 3. Assume x, yEA. If xy is not a subset of K\JA, then by use

of Lemma 2, xy must contain at least one point of the complement of

S. Thus by Tietze's Theorem [4, Theorem 4.4. p. 49], the set

conv (u, x, y)C\S, being nonconvex, has a point of local nonconvexity,

which is also a point of local nonconvexity of S, denoted by q. Since

x, yES, we have q(£xu\Jyu. Also qExy would imply xyES. So

g'Gint conv(w, x, y). Also, the projections of x and y onto bd K are

elements of R (by definition of A). Since qEQ, we have gGcl G.

Therefore we may choose zEG close to q and vEint K close to u so

that x, y, z and v are coplanar, with zGint conv(i>, x, y), and so that

the projections of x and y onto bd K (now with respect to v) still lie

in R. Then as a point moves continuously from x to y along xy, its

projection onto bd K with respect to v begins in R, crosses into G (the

point z), and returns to R. At these two crossings we can deduce the

existence of two different points of Q inside int conv(fl, x, y), violating

Lemma 3. So xyEKVJA.
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Thus K\JA is convex, and by symmetry so is KV)B. Hence the

Main Theorem is proved for E3.

The above proof for £3 holds valid for En with n>3. The only

change required in the proof is that the (n — 2)-dimensional mani-

fold Mi must be shown to separate bd K (which is topologically equiv-

alent to an (n — l)-sphere) into two components Aj and Bi so that

cl Air\cl Bi=Mi. I am very grateful to Professor R. L. Wilder for

advising me that this fact follows from his Jordan-Brouwer Type of

Separation Theorem for an n-GCM [6, p. 294].

Counterexamples. The necessity of compactness in the Main

Theorem is shown by taking S = A XEi, where A is a 5-pointed star

and Ei is the real line. The necessity of the condition QCint conv 5 is

shown by letting S = A X [0, l]. The necessity that the dimension be

at least three is shown by the 5-pointed star in the plane.
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