SOLUTIONS OF f(x) =f(a)+ (RL) [i(fH+fG) FOR RINGS
BURRELL W. HELTON

AssTrACT. We show that there is a solution f of the equation
1@ = 1@ + ®D) [ +16)

such that f($) =0 and f(g) #0 for some pair p, ¢E [a, b] iff there is a
number ¢E [a,b]such that one of 1—H(¢-, £), 1—H(t, t*), 1 4+G(, §)
or 1+G(¢,t*) is zero or a right divisor of zero, where f, G and H
are functions of bounded variation with ranges in a normed ring N.
Furthermore, if N is a field, then for each discontinuity of H
on [a,b] there exists A\€N and a finite set of linearly indepen-
dent nonzero solutions on [a,b] of the equation f(x)=f(a)+
(RL) [3(fH+fG)A such that if f is a solution and has bounded vari-
ation on [a, b], then f is a linear combination of this set of solutions.
Product integrals are used extensively in the proofs.

1. Definitions and preliminary theorems. For detailed definitions
see [1, p. 299]. R is the set of real numbers, N is a ring which has a
multiplicative identity element 1 and a norm |-| with respect to
which N is complete and | 1| =1; G and H are functions from RXR
to N and functions from R to N are denoted by lower case letters.
The symbol < is defined by one of the following statements: (1) if x
and yER, then x <y iff y is less than x, and (2) if x and y&ER, then
x <y iff x is less than y. The symbols [x, y], G(x, ¥), J¥, - []?, etc. imply
that x <y. {xi}{)' is a subdivision of [g, p] means g=x, << - - - <x,
=p. All sum and product integrals (represented by ,][*G) are sub-
division-refinement-type limits; ,H’G =1,

RD) [ G+ 16) ~ ) A, ) + @G, )

and
b
) [ 78~ 3@ + S ) forasa<yss

GEO0A"on [a, b] iff G exists and [2|G—[G| =0; GEOMP on [a, b]
iff . []v(14+G) exists for asx<y<b and f2| 1+6) - [I(1+G)| =0;
GEOBon [a, b] iff for a suitably chosen subdivision {x;} of [a,b] G
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has bounded variation on [x;_j, x:] for i=1, 2, - - -, n. GEOI® on
[x, ¥] means there is a subdivision {x;}} of [x, ¥] such thatif 0<i<n
then the multiplicative inverse of G exists and is bounded on [x,_;, x:];
appropriate modifications are used for open and half open intervals.
GEOL® on [a, b] iff lim,,,- G(x, p) and lim,,,.,~ G(x, y) exist for
pE(a, b] and lim,,+ G(p, x) and lim, .+ G(x, ) exist for pE [a, b).
When confusion is unlikely, phrases such as “on [a, »]” will be omit-
ted, (RL)[2(fH+fG) will be denoted by [2fH-+fG, and “the given
equation on [x, y]” refers to the equation f(y) =f(x) + (RL) [*(fH+fG).

THEOREM 1. If H and G are functions from RXR to N such that
GEQOA® and OB® and HEOL® on [a, b], then GH and HGE QA" and
OM?° on [a, b].

This is Theorem 2 in [2, p. 494].

If H and GEOA® and OB and f has bounded variation on [a, ], it
follows from Theorem 3.5 [1, p. 303] that f(y)H(x, y) +f(x)G(x, ¥)
€04° on [a, b].

THEOREM 2. If H and G are functions such that H and GEOA® and
OB® and (1 —H)EOI® on [a, b], then . [[*(1+G)(1 —H)~! exists for
aZ<x<y=band, if f is a funclion, the following statements are equiva-
lent.

(1) f(y)H(x, y) +f(x)G(x, y) EOA and f(x) =f(a) + (RL) [2(fH+SG)
for a=x=<b.

(2) If a<x<y=b, then f(y) =f(x). [[*(1+G) (1 —H)~™.

ProoF. Let A=(14+G)(1—H)-!, then 4—1=(H+G)(1—H)
EO0B°. Since HEOB® and 1 —HEOI°, then (1—-H)"'&€0L° and, by
Theorem 1, A —1&0M?° and ,HVA exists on [a, b]. Furthermore, if
f is bounded, then (L)/¢|f()[II4—4 (, )]| =0. It follows from
Theorem 5.1 [1, p. 310] that the two statements are equivalent. Note
that ,]J?4 is a bounded function.

2. Principal theorems. A corollary to the following theorem is
obtained by using the conditions enclosed by brackets in place of
those in quotation marks.

THEOREM 3. If H and GEOA® and OB® on [a, b), the following state-
ments are equivalent:

(1) There is a function f and numbers p and g such that a <p <q=<b,
“f(p) =0" [f(p)#0], “f(q)=0” [f(g)=0], f kas bounded variation on
[p, q] and f(x) =f(p)+(RL) [;(H+SG) for xE [, q].

(2) There is a number t€ [a, b] such that t%a and “1—H(t~, t)”
[14G(t=, £)] is zero or a right divisor of zero or such that t#b and
“1—H(t, tY)” [14+G(¢, t*)] is zero or a right divisor of zero.
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ProoF. (1)—(2). Let S be the number set such that x&S iff
xE [p, ¢] and f(x) =0; then S has a least upper bound ¢ and p <t <gq.
If f(t) #0, then a S p <¢,

10 = 50) + [ 78+ 16 = 1) + [OH(, Y

and
0 =f(t) =fH[1 — HE, 1]

and therefore 1 —H(¢™, t) is zero or a right divisor of zero.
If f(¢) =0, then t<g¢=b and

1) =+ [ 416 =50+ [ i+ 56 = e, )

and therefore f(¢+) [1 —H(¢, t*)] =0 and 1 —H(¢, t*) is zero or a right
divisor of zero, provided f(t*) #0. Suppose f(¢t) =0; then there is a
number ¢ such that t<c<gq and (1—H)EOI° on (¢, c]; hence, by
Theorem 2, if xE (¢, ¢], then

1@ = 1) + [ 78+ 6 = eIl (1 + Ot = 1yt = o,

Therefore, ¢ is not the least upper bound of S.

(2)—(1). Suppose t#a and 1—H(~, ¢) is zero or a right divi-
sor of zero; let p=a, ¢=¢, k be a nonzero element of N such that
E[1—H(t, t)]=0, and let f be the function such that f(x)=0 for
xE [a, t) and f(t) =k. If xE€ [a, q), then f(a)+ [2fH+fG=0=(x). If
x=¢q=¢, then

1@+ [ 8416 = 50) + [ 18+ 56 = s,
=) = #lt = B, 0] = 1) = 1.

Suppose ¢t#b and 1 —H(¢, tt) is zero or a right divisor of zero. There
is a number ¢ such that ¢<¢<b and such that 1 —HEOI® on (¢, q].
Also, there is a nonzero element 2 N such that k[1 —H(t, t+)] =0.
Let p =a and define f to be the function such that f(x) =0 for x & [a, ¢]
and

f@) = ke ][0+ O)1 = B forx € (4, ql;
then f(t*) =k. If xE (¢, ¢], then
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) + f fH 4 16
~( f "y 1] ) (8 +16) = 1) + [ ;fH + /G

=k— k[l — Ht ]+ fsz + /G = k][0 4+ G)1 — H)~

= J(2).

Since H and GEOB? and f is bounded on [p, ¢], then [fH+fG and f
have bounded variation on [, q].

PROOF OF COROLLARY. Since f(y)=f(x)+(RL)[})H+fG for
asx<y=sbiff forasx<y=b

16 = 16) = ®R) [ 78+ 16 = 1) + RD) [ “f=g) + 5=,

where g(y, x) =G(x, y) and k(y, x) = H(x, ¥), it follows that this corol-
lary is a special case of the preceding theorem with —g and —# play-
ing the roles of H and G, respectively.

LeEMMA. If f(x) =f(a) + (RL) [Z(fH+fG) for xE [a, b], then
(1) if xE(a, b], fx)[1—H(x, )] =f) [1+G(x—, x)], and
(2) if xE[a, b), f&t)[1—H(x, x*) ] =f(x) [1+G(x, x1)].

THEOREM 4. Given: a<p <b; H and GEOA® and OB® on [a, b]; if
a<p, then H(p~, p)=1;1if p<b, then H(p, p*) =1 and 1+G(p, p*) s
not a right divisor of zero; there is a function f of bounded variation on
[a, b] such that f(p) #0 and f(x) =f(a) +(RL) [ (fH+fG) for xE [a, b];
and u is a function such that u(x) =0 if x#p.

Conclusion. If xE [a, b], then u(x) =u(a)+(RL) [f(uH+uG).

Proor. If a<p =b, then u(x) =0 for a =x<p and
w(o) + [l + 4G = wDHG, ) = ulp).

If a <p<b, then it follows from the lemma that
fO1+ G, p1)] = f(pH)[1 — H(p, p%)] = 0;
hence, 14+G(p, p*) =0 and, if xE(p, b], then

w(p) + [ w446 = u(p) + wpOHG, )+ u(p)G(r, )
’ = u(p)[1+ Glp, p9] = 0 = u(a).
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If a <p <b, it follows from the two preceding results that u(x) =u(a)
+(RL) [}(uH~+uG) for xE [a, b].

In the following theorems the symbol (p, ¢) denotes a subset of
[a, 8] such that

(1) 1—HEOI° on (p, ¢) and (p, ) S (p, )< [p, gl

(2) H has a discontinuity of 1 at p provided p#a, and at g pro-
vided ¢Cb; and

(3) pE(p, @) iff H(p, p*)#1, and ¢E(p, ¢) iff H(g™, ¢) #1. Also,
if pE(p, q) and a=p, then p’, p* denotes p—, p; if p&E(p, ¢), then
p’, p* denotes p, pt; if g (p, q), then ¢’, ¢* denotes ¢-, ¢; and if
q&(p, q), then ¢, ¢* denotes ¢, ¢*; if aE(p, q), the p*=a.

THEOREM 5. Given. a £p<q=b; H and GEOA® and OB®; (1—H)
EO0I° on {p, q); either a=(p, q), or a<pE(p, q¢) and H(p~, p)=1, or
aZp&E(p, ¢) and H(p, p¥) =1; either bE(p, q), or b2 g (p, ¢) and
H(g~, q)=1,0r b>qE(p, q) and H(g, ¢*) =1; if xE [a, b], then neither
of 14+G(x~, x) or 1 +G(x, x*) is a right divisor of zero; there is a function
f with bounded variation on [a, b] and a number tE(p, q) such that
F(&) #0 and f(x) =f(a) + (RL) [; (fH+SG) for xE [a, b]; u is a function
such that u(x)=0 for x&(p, ¢q), u(p*) =1, and if xE{p, q) then
u(x) =" 0+6) (1 —H)

Conclusion. (1) If x< [a, b], then u(x) =u(a) + (RL) [Z(uH+uG).

(2) If the function w has bounded variation and is a solution of the
given equation on [a, b], then w(x) =w(p*)u(x) for xE(p, q) and, if
there exisis a number ¢S (p, q) such that w(c) #0, then w(p*) #O0.

Proor orF (1). If a€:(p, ¢), it follows from the preceding theorem
that u is a solution on [a, p*]; hence, if xE(p, ¢), then

u(a) + fzuH + uG = u(p*) + fzuH + 4G
a P‘

=u(p)p I A+ 61 — B) = u(a).

Suppose b&E(p, g). It follows from Theorem 2 that « is a solution on
(p, q); hence, if xE [g*, b], then u(¢*) =0 and

u(p*) —I-fjuH + 4G = u(q’) +<fq,q*+ fj)(uH + uG)

= u(q") + u(g"H(, ¢*) + u(¢)G({, ¢*)
= u(@)[1 + G(¢, ¢")] = 0 = u(x),

provided one of u(¢’) or 1+G(¢’, ¢*) is zero.
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In order to show that the preceding requirement is satisfied, we will
consider two cases: f(¢') #0 and f(¢’) =0. If f(¢’) #0, then

0 = f(g")[1 — H(, ¢)] = f(&H[1 + G(¢, ¢M)]

and 14+G(¢, ¢*)=0 because 14+G(¢’, ¢*) is not a right divisor of
zero. If f(g') =0, then it follows from the corollary to Theorem 3 that
there is a number z such that t <z =<¢’ and such that 14+G(z’, 2*) =0;
hence, u(¢') =, 1¢¥ 14+G) (1 —H)~1=0.

If a(p, q) and b (p, q), it follows from the two preceding results
that

u(x) = u(a) + (RL) fz(uH + uG) forx € [a,b].

Let ¢ be a number such that p <c<g; then, if ¢*<x=<b, it follows
that

u(a) -I-f uH 4+ uG = u(c) —i—f uH + uG = u(x).
ProoF of (2). If xE(p, q), then, by Theorem 2,
w(x) = w(a) -l—f wH + wG = w(p*) + fsz + wG
a p*

= w2 (1 + G — H)' = w(p*)u(x)

and w(x)=0 if w(p*)=0. Hence, if c&(p, ¢) and w(c)#0, then
w(p*) #0.

THEOREM 6. Given. H and G are functions from RXR to N such ihat
H and GEOA® and OB° on [a, b]; if xE(a, b] and 1 —H(x~, x)~!
does not exist, then H(x—, x) =1; if xE [a, b) and [1 —H(x, x*) ]~ does
not exist, then H(x, x*)=1; if x& [a, b], then neither of 1+G(x~, x)
or 1+G(x, xt) is a right divisor of zero.

Conclusion. There is a finite set of linearly independent solutions
of the equation f(x)=f(a)+(RL)[: (fH+fG) on [a, b] such that a
function f is a linear combination of this set iff f has bounded varialion
on [a, b] and f is a solution to the given equation on [a, b].

Proor. It is assumed that the equation has at least one nonzero
solution. Let {x;}# be the subdivision of [a, b] such that x& {x:}77
if Hx—, x)=1 or H(x, x*)=1; then (1—H)EOI® on (xi, x;) for
1=1,2, .. ,m.

Let P be the set of integers such that ¢ P iff 0 <7 =<# and there is
a solution f on [a, ] and a number ¢ & (xi_1, ;) such that f(¢) #0. For
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each iEP, define ¢;=x,", and u; to be the function defined in The-
orem 5, where ¢; corresponds to ¢* and u;(c;) =1.

Let O be the set of integers such that 1&Q iff 0=i=<# and «x;
& Uiep(xi1, x:) and there is a solution f on [a, b] such that f(x;) 0.
For 1€(Q, define w; to be the function such that w;(x;)=1 and
w;(x) =0 if x>%x;; it follows from Theorem 4 that w; is a solution of
the equation on [a, b].

The set {ui } iep\J {'w,} seq of functions is the desired set. Since each
function belonging to the set has bounded variation and is a solution
of the equation on [a, #], then each linear combination of these func-
tions is a solution and has bounded variation on [a, b]. If {k:}iep
and {h,} «cq are subsets of NV and if m& P, then

Z kai(em) + Z hiwi(cm) = Rmthm(Cm) = km;
ieP i€Q
a similar result holds for m & Q. Therefore, if

Z kaui(x) + Z hawi(x) =0

{EP 1€Q
for all xE [a, b], then each of the coefficients is zero; hence, the func-
tions are linearly independent.

If f is a solution of the equation and has bounded variation on
[, ] and x€ [a, b], then the summation
2 feui(@) + 20 f(x)wi(x) = g(=)
1EP 1€Q

simplifies as follows:

(1) if ¢€P and x&E(x;y, xi), then g(x)=f(c;)ui(x)=f(x), by
Theorem 5;

(2) if #€Q and x =x;, then g(x) =f(x:)w:(x) =f(x;) =f(x); and

3) if x&(xi_1, x;) and ¢ P or if x=x; and 1€ Q, then g(x) =0.

From the definition of P and Q, if the conditions in (3) are satis-
fied, then f(x) =0. Hence, the above summation is f(x) for xE [a, b].

3. Comments. If Nis a field and H and GE0A®and OB° on |a, b],
then each of the equations

16 = ®D) [ "G+ 60, 1) = ® [ g

and

16 = n) [y
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has a solution on [a, b] iff H has a discontinuity & on [a, 5], in which
case A=k~L If k is such a discontinuity of H, then there is a largest
number pE [a, b] at which the discontinuity occurs and the function
f can be defined on [a, &] as in Theorem 3(2)—(1). The set of N’s
may be infinite but cannot be uncountable. The possibility that the
equation f(x)=f(a)+(RL)[; (fH+fG) has a solution f on [a, b]
for which f(a) 0 depends on the order of occurrence and relative
values of the discontinuities of H and G.

The following conjectures are probably true.

1. Similar theorems will hold for the equations

i) = 1) + ko) [+ 6p,

1) = 50 + RD) [ E + 6
and

j6) = st0) + D) [ B+ 16).

2. The set R can be any linearly ordered set [4, p. 149].
3. In Theorems 4 and 5 the restrictions on 1 —H can be relaxed to
permit 1 —H(x~, x) and 1 —H(x, x*) to be right divisors of zero.
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