
SOLUTIONS OF f(x)=f(a)+ (RL)f*a(fH+fG) FOR RINGS

BURRELL W. HELTON

Abstract. We show that there is a solution / of the equation

f(x)=f(a) + (RL) f*(fH+fG)

such that f(p) = 0 and /(g) ^ 0 for some pair p, q G [a, b ] iff there is a

number tG [a,b] such that one of l-H(f,t), l-H(t,t+), 1+G(r, t)

or 1 -\-G(t, t+) is zero or a right divisor of zero, where /, G and H

are functions of bounded variation with ranges in a normed ring N.

Furthermore, if N is a field, then for each discontinuity of H

on [a,b] there exists A£iV and a finite set of linearly indepen-

dent nonzero solutions on [a,b] of the equation f(x) =/(o) +

(RL) Fa(fH+fG)\ such that if/ is a solution and has bounded vari-

ation on [a, b], then /is a linear combination of this set of solutions.

Product integrals are used extensively in the proofs.

1. Definitions and preliminary theorems. For detailed definitions

see [l, p. 299]. R is the set of real numbers, N is a ring which has a

multiplicative identity element 1 and a norm | • | with respect to

which N is complete and | 11 = 1; G and 77 are functions from R XR

to N and functions from R to N are denoted by lower case letters.

The symbol < is defined by one of the following statements: (1) if x

and yER, then x<y iff y is less than x, and (2) if x and yER, then

x<y iff x is less than y. The symbols [x, y], G(x, y), Jl, .J]", etc. imply
thatx<y. {x,}Jis a subdivision of [q, p] means q = x0 <Xi< • ■ • <x„

= p. All sum and product integrals (represented by oIP'G) are sub-

division-refinement-type limits; x\\?G = \,

(RL) f   (fH+fG)~f(y)H(x,y)+f(x)G(x,y)
J a

and

(m) f fH ~ |[/(x) + f(y)]B(x, y)    for a g x < y g, b.

GEOA° on [a, b] iff JbaG exists and f!\G-fG\ =0; GEOM0 on [a, b]
iff *I]>(1+G) exists for agxKygb and Jl\ (1+0)- IKl+G)) =0;
GEOB0 on [a, b] iff for a suitably chosen subdivision {x,}oof [a, b] G
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has bounded variation on [x,_i, x,] for » = 1, 2, • • • , n. GEOP on

[x, y ] means there is a subdivision {xt} o of [x, y ] such that if 0 <i ^ n

then the multiplicative inverse of G exists and is bounded on [x,_i, Xi];

appropriate modifications are used for open and half open intervals.

GEOL0 on [a, b] iff lim*.^- G(x, p) and lim*,,,-.,,- G(x, y) exist for

pE(a, b] and limx_p+ G(p, x) and limx,t,-,p+ G(x, y) exist for pE [a, b).

When confusion is unlikely, phrases such as "on [a, b]" will be omit-

ted, (RL)fa(JH+fG) will be denoted by flfH+fG, and "the given
equation on [x, y]" refers to the equation/^) =/(x) + (RL)fl(fH+fG).

Theorem I. If H and G are functions from RXR to N such that

G£OA° and 0B° and HEOL0 on [a, b], then GH and HGEOA0 and
OM° on [a, b].

This is Theorem 2 in [2, p. 494].

If Hand GEOA0 and OB° and/has bounded variation on [a, b], it

follows from Theorem 3.5 [l, p. 303] that f(y)H(x, y) +/(x)G(x, y)

EOA° on [a, b].

Theorem 2. // H and G are functions such that II and GEO A0 and

OB» and (\-H)EOP on [a, b], then ^(l+O^-H)-1 exists for

a?Sx<ytkb and, if f is a function, the following statements are equiva-

lent.

(1) f(y)H(x, y) +f(x)G(x, y)EOA<> andf(x) =f(a) + (RL)Jl(fH+fG)
for a^x^b.

(2) Ifa^x<y^b,thenf(y)=f(x)xJlv(l+G)(l-H)-K

Proof. Let A = (1+G)(1 -H)~l, then A -1 = (H+G)(l -H)-1

EOB°. Since H<=OB° and 1 -HEOP, then (1 -H^EOL0 and, by
Theorem 1, A — IEOM" and ^"^ exists on [a, b]. Furthermore, if

/ is bounded, then (L)Jba\f( ){T\A-A ( , )]| =0. It follows from

Theorem 5.1 [l, p. 310] that the two statements are equivalent. Note

that oIT1^ is a bounded function.

2. Principal theorems. A corollary to the following theorem is

obtained by using the conditions enclosed by brackets in place of

those in quotation marks.

Theorem 3. If H and GEOA" and OB" on [a, b], the following state-

ments are equivalent:

(1) There is a function f and numbers p and q such that a^p<q^b,

«/(£)= 0" [f(p)^0], "/(g)^0" [/(g) = 0], / has bounded variation on

\p, q\ andf(x) =f(p) + (RL)fxp(fH+fG) for xG [p, q].
(2) There is a number tE [a, b] such that t^a and "l—H(t-, t)"

[l-\-G(t~, t)] is zero or a right divisor of zero or such that ty^b and

"1 —H(t, t+)" [l +G(t, t+) ] is zero or a right divisor of zero.
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Proof. (1)—»(2). Let 5 be the number set such that x£5 iff

x£ [p, q] and/(x) =0; then 5 has a least upper bound I and pgtgq.

If/(0^0, then agp<t,

f(t) = f(p) + f'fH+fG= f(r) + f(t)H(r, t)

and

o=/(r) =/(0[i-77(r,z)]

and therefore 1 —H(tr, t) is zero or a right divisor of zero.

Iff(t) =0, then Kqgb and

/(<+) = f(P) +J'f3+fG=f(l)+j   fH+fG= f(t+)E(t, t+)

and therefore f(t+) [l -H(t, t+) ] = 0 and 1 -H(t, t+) is zero or a right

divisor of zero, provided f(t+) r^0. Suppose f(t+)= 0; then there is a

number c such that t<c<q and (1—77)£07° on (t, c\; hence, by

Theorem 2, if x£(Z, c], then

f(x) = f(t+) + C'fH+fG = f(t+)t+Jl* (1 + G)(l - S)-i = 0.
J t+

Therefore, t is not the least upper bound of S.

(2)—>(1). Suppose tj^a and 1—H(t~, t) is zero or a right divi-

sor of zero; let p = a, q = t, k be a nonzero element of N such that

k[l— H(t~, t)]=0, and let/ be the function such that/(x)=0 for

xE[a, t) and f(t)=k. If x£[a, q), then f(a) +fxJH+fG = 0 =/(x). If
x = q = t, then

/(a) +JfH+fG= /(/") +JtfH+fG= f(t)E(t-, t)

= f(t)-k[l-H(tr,t)]=f(t) =f(x).

Suppose 2t^& and 1 —H(t, t+) is zero or a right divisor of zero. There

is a number q such that t<q<b and such that 1—77£07° on (<, g].

Also, there is a nonzero element kEN such that k[l—H(t, t+)]=0.

Let£ = aand define/to be the function such that/(x) =0 for x£ [a, t]

and

f(x) = kt+]J* (1 + G)(l - 77)-1    for x £ (t, q];

then /(Z+) = k. If x£(Z, g], then
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f(P) + f'fH+fG

= ( J" +f^(JB+fCf)= f(t+)H(l, *♦■) +J/B+ fG

= k-k[l- H(t, t+)] + f fH+fG = kt+H* (1 + G)(l - H)'1

= fi*)-
Since H and GEOB0 and / is bounded on [p, q], then JfH+fG and /
have bounded variation on [p, q].

Proof    of    corollary.    Since   f(y)=f(x) + (RL)JyxfH+fG    for
a^x<y^b iff for a^x<y^&

/(*) = f(y) - (RL) f'fH+fG = f(y) + (RL) f*f(-g) +f(-h),

where g(y, x) =G(x, y) and h(y, x) =H(x, y), it follows that this corol-

lary is a special case of the preceding theorem with — g and — h play-

ing the roles of H and G, respectively.

Lemma. If f(x) =f(a) + (RL)tf(fH+fG) for xE [a, b], then
(1) ifxE(a, b], f(x)[l-H(x~, x)]=f(x~)[l+G(x~, x)], and
(2) ifxE[a,b), f(x+)[l-H(x, x+)]=f(x)[l+G(x, x+)].

Theorem 4. Given: a^p-^b; H and GEOA0 and OB° on [a, b]; if

a<p, then H(p~, p) = l;ifp<b, then H(p, p+) = 1 and 1 +G(p, p+) is

not a right divisor of zero; there is a function f of bounded variation on

[a, b] such thatf(p)^0 andf(x) =f(a) + (RL)fZ(fH+fG) for xE [a, b];
and u is a function such that u(x) = 0 if xj^p.

Conclusion. If xG[a, b], then u(x) =u(a) + (RL)fa(uH+uG).

Proof. If a<p^b, then u(x) =0 for a^x<p and

u(a) +  I    uH + uG = u(p)H(p~, p) = u(p).
J a

If a^p<b, then it follows from the lemma that

f(p)[l + G(p, p+)} = f(p+)[l - E(p, p+)]=0;

hence, 1+G(p, p+)=Q and, if xE(p, b], then

u(p) + f  uH + uG = u(p) + u(p+)H(p, p+) + u(p)G(p, p+)

= u(p)[l + G(p, p+)] =0 = u(x).
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If a<p<b, it follows from the two preceding results that u(x) =u(a)

+ (RL)tf(uH+uG) for x£ [a, b].
In the following theorems the symbol (p, q) denotes a subset of

[a, b] such that

(1) l-/7£07°on(£, g)and (p, q)Q(p, q)Q [p, q];
(2) 77 has a discontinuity of 1 at p provided p^a, and at q pro-

vided qQb; and

(3) PE(P, q) iff H(p, p+)*\, and qE(p, q) iff 77(g", g)^l. Also,
if pE{p, q) and a^p, then p', p* denotes p~, p; if p$z(p, q), then

p', p* denotes p, p+; if q$z(p, q), then q', q* denotes q~, q; and if

qE(p, q), then g', g* denotes g, g+; if aE(p, q), the p* = a.

Theorem 5. Given, a gp<qgb; 77 and GEOA0 and OB°; (1-77)
£07° on (p, q); either aE(p, q), or a<pE(p, g) and H(p~, p) = 1, or

agp(£{p, q) and H(p, p+) = \; either bE(p, q), or b^q(£(p, g) and

H(q~, q) = 1, or b>qE(P, q) and H(q, g+) = 1; if xE [a, b], then neither

of 1 +G(x~, x) or 1 +G(x, x+) is a right divisor of zero; there is a function

f with bounded variation on [a, b] and a number tE(p, q) such that

f(t)^0 andf(x) =f(a)-\-(RL)fZ(fH-\-fG) for x£ [a, b]; u is a function
such that u(x)=0 for x(£(p, q), u(p*) = l, and if xE(p, q) then

u(x)=p>H.x(l+G)(l-H)-\

Conclusion. (1) 7/x£[a, b], then u(x)=u(a)-\-(RL)f*(uH-\-uG).

(2) If the function w has bounded variation and is a solution of the

given equation on [a, b], then w(x) =w(p*)u(x) for xE(P, q) and, if

there exists a number cE(p, q) such that w(c) f^O, then w(p*) t±0.

Proof of (1). If a^(p, q), it follows from the preceding theorem

that u is a solution on [a, p*\; hence, if xE(p, q), then

/• X /» XuH + uG = u(p*) +|    uH + uG
a " p*

= <P*)p*K (1 + G)(l - 77)-i = «(*).

Suppose b(\z(p, q). It follows from Theorem 2 that u is a solution on

(p, q); hence, if x£ [g*, b], then u(q*) =0 and

u(P*) + f*uH + uG = u(q') +( f' + r)(uH + uG)

= u(q') + u(q*)H(q>, q*) + u(q')G(q', q*)

= u(q')[l+G(q',q*)] = 0 = u(x),

provided one of u(q') or 1+G(g', g*) is zero.
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In order to show that the preceding requirement is satisfied, we will

consider two cases :/(g')=^0 and f(q') =0. If/(g')^0, then

0 = /((f) [1 - H(q', q*)] = f(q')[\ + G(q', q*)}

and 1+G(q', q*)=0 because l+G(q', q*) is not a right divisor of

zero. If/(<?') =0, then it follows from the corollary to Theorem 3 that

there is a number z such that t<z^q' and such that 1-|-G(z', z*) =0;

hence, u(q') =„£[*' (1+G)(l-H)~1 = 0.

If aE(P< q) and bE(P, q), it follows from the two preceding results

that

u(x) = u(a) + (RL) f   (uH + uG)    for x E [a, b].

Let c be a number such that p<c<q; then, if q*^x^b, it follows

that

f* X f* X

u(a) +  I    uH + uG = u(c) +  I    uH + uG = u(x).

Proof of (2). If xE(p, q), then, by Theorem 2,

/» X /» XwH + wG = w(p*) +  I    wH + wG
a J p*

= AP*)P*IJX (1 + G)(l - //)-' = w(p*)u(x)

and w(x)=0 if w(p*)=0. Hence, if cE(P, q) and w(c)f^0, then

w(p*)^0.

Theorem 6. Given. H and G are functions from RXR to N such that

H and GEOA0 and OB° on [a, b]; if xE(a, b] and \-H(x~, x)-1

does not exist, then H(x~, x) = 1; if xE [a, b) and [l —H(x, x+) ]_1 does

not exist, then H(x, x+) = 1; if xE [a, b], then neither of 1+G(x_, x)

or 1 +G(x, x+) is a right divisor of zero.

Conclusion. There is a finite set of linearly independent solutions

of the equation f(x) =f(a) + (RL)fa (JH+fG) on [a, b] such that a
function f is a linear combination of this set iff f has bounded variation

on [a, b] and f is a solution to the given equation on [a, b\.

Proof. It is assumed that the equation has at least one nonzero

solution. Let {x,}" be the subdivision of [a, b] such that xGpiJi"1

iff H(xr, x) = l or H(x, x+) = l; then (l-H)EOP on (x<_i, xA for

t = l, 2, • ■ ■ , n.
Let P be the set of integers such that iEP iff 0<i^w and there is

a solution/ on [a, b] and a number tE(xi-i, x,) such that/(2) 5^0. For
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each iEP, define cl=x<_1 and w,- to be the function defined in The-

orem 5, where c,- corresponds to p* and Wj(ct) = 1.

Let 0 be the set of integers such that iEQ iff Osjis=« and x*

(£UiEp(x;_i, x.) and there is a solution/ on [a, b] such that/(x;) 5^0.

For iEQ, define Wi to be the function such that w,(x,) = 1 and

Wi(x) =0 if x^x,-; it follows from Theorem 4 that wf is a solution of

the equation on [a, b].

The set {Ui} ;epU {Wi} ,eg of functions is the desired set. Since each

function belonging to the set has bounded variation and is a solution

of the equation on [a, b], then each linear combination of these func-

tions is a solution and has bounded variation on [a, b]. If J4j},sp

and {^ijiGQ are subsets of N and if mEP, then

22 kiUi(cm) + 22 hiWi(cm) = kmum(cm) = km;

a similar result holds for mEQ- Therefore, if

2~2 kt-Ui(x) + X) hiWi(x) = 0
ieP ieQ

for all x£ [a, b], then each of the coefficients is zero; hence, the func-

tions are linearly independent.

If / is a solution of the equation and has bounded variation on

[a, b] and x£ [a, b], then the summation

Y;f(Ci)Ui(x) +  X) f(Xi)Wi(x)  = g(x)
ieP ieQ

simplifies as follows:

(1) if iEP and x£(x,_i, x,), then g(x) =/(c,)w,(x) =f(x), by

Theorem 5;

(2) if iEQ and x = x,-, then g(x) =f(xi)Wi(x) =/(xj) =/(x); and

(3) if x£(x;_!, x.) and iEP or if x = x< and iEQ, then g(x) =0.

From the definition of P and Q, if the conditions in (3) are satis-

fied, then/(x) =0. Hence, the above summation is/(x) for x£ [a, b].

3. Comments. If N is a field and 77 and GEOA° and 0B° on [a, b],

then each of the equations

/(*) = (£7) f'(fH+fG)\,   f(x) = (7?)  CfH\

and

fix) = (m) f'fHX
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has a solution on [a, b] iff H has a discontinuity k on [a, b], in which

case \ = k~l. If k is such a discontinuity of H, then there is a largest

number pE [«, &] at which the discontinuity occurs and the function

/ can be defined on [a, b] as in Theorem 3(2)—»(1). The set of X's

may be infinite but cannot be uncountable. The possibility that the

equation f(x) =f(a) + (RL)fl(fH+fG) has a solution / on [a, b]
for which f(a) ?±0 depends on the order of occurrence and relative

values of the discontinuities of H and G.

The following conjectures are probably true.

1. Similar theorems will hold for the equations

f(x) =f(a) + (RL)jX(Hf + Gf),

f(x)=f(a) + (RL)J\fH+Gf)

and

f(x) =f(a) + (RL) fX(Hf + fG).

2. The set R can be any linearly ordered set [4, p. 149].

3. In Theorems 4 and 5 the restrictions on 1 — H can be relaxed to

permit 1 —H(x~, x) and 1 —H(x, x+) to be right divisors of zero.
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