SOLUTIONS OF $f(x) = f(a) + (RL) \int_a^x (fH + fG)$ **FOR RINGS**

BURRELL W. HELTON

ABSTRACT. We show that there is a solution f of the equation

$$f(x) = f(a) + (RL) \int_{a}^{x} (fH + fG)$$

such that f(p) = 0 and $f(q) \neq 0$ for some pair $p, q \in [a, b]$ iff there is a number $t \in [a, b]$ such that one of $1 - H(t^-, t), 1 - H(t, t^+), 1 + G(t^-, t)$ or $1 + G(t, t^+)$ is zero or a right divisor of zero, where f, G and H are functions of bounded variation with ranges in a normed ring N. Furthermore, if N is a field, then for each discontinuity of H on [a, b] there exists $\lambda \in N$ and a finite set of linearly independent nonzero solutions on [a, b] of the equation $f(x) = f(a) + (RL) \int_a^x (fH + fG)\lambda$ such that if f is a solution and has bounded variation on [a, b], then f is a linear combination of this set of solutions. Product integrals are used extensively in the proofs.

1. Definitions and preliminary theorems. For detailed definitions see [1, p. 299]. R is the set of real numbers, N is a ring which has a multiplicative identity element 1 and a norm $|\cdot|$ with respect to which N is complete and |1|=1; G and H are functions from $R\times R$ to N and functions from R to N are denoted by lower case letters. The symbol < is defined by one of the following statements: (1) if x and $y\in R$, then x< y iff x is less than x, and (2) if x and $y\in R$, then x< y iff x is less than x. The symbols [x,y], G(x,y), \int_{x}^{y} , $x\prod_{x}^{y}$, etc. imply that x< y. $\{x_i\}_0^n$ is a subdivision of [q,p] means $q=x_0< x_1< \cdots < x_n=p$. All sum and product integrals (represented by $a\prod_{x} bG$) are subdivision-refinement-type limits; $x\prod_{x} aG=1$,

$$(RL)\int_a^b (fH+fG) \sim f(y)H(x,y)+f(x)G(x,y)$$

and

$$(m) \int_a^b fH \sim \frac{1}{2} [f(x) + f(y)] H(x, y) \quad \text{for } a \le x < y \le b.$$

 $G \in OA^0$ on [a, b] iff $\int_a^b G$ exists and $\int_a^b |G - \int G| = 0$; $G \in OM^0$ on [a, b] iff $_x \prod^y (1+G)$ exists for $a \le x < y \le b$ and $\int_a^b |(1+G) - \prod (1+G)| = 0$; $G \in OB^0$ on [a, b] iff for a suitably chosen subdivision $\{x_i\}_0^n$ of [a, b] $G \in OB^0$ on [a, b] of [a, b] of [a, b] or [a, b]

Received by the editors June 23, 1969.

AMS Subject Classifications. Primary 4510; Secondary 3345.

Key Words and Phrases. Integral equations, product integrals, normed ring, non-zero solutions, linearly independent solutions, divisors of zero, bounded variation.

has bounded variation on $[x_{i-1}, x_i]$ for $i=1, 2, \cdots, n$. $G \in OI^0$ on [x, y] means there is a subdivision $\{x_i\}_0^n$ of [x, y] such that if $0 < i \le n$ then the multiplicative inverse of G exists and is bounded on $[x_{i-1}, x_i]$; appropriate modifications are used for open and half open intervals. $G \in OL^0$ on [a, b] iff $\lim_{x \to p^+} G(x, p)$ and $\lim_{x,y \to p^+} G(x, y)$ exist for $p \in [a, b]$ and $\lim_{x \to p^+} G(p, x)$ and $\lim_{x,y \to p^+} G(x, y)$ exist for $p \in [a, b)$. When confusion is unlikely, phrases such as "on [a, b]" will be omitted, $(RL) \int_a^b (fH + fG)$ will be denoted by $\int_a^b fH + fG$, and "the given equation on [x, y]" refers to the equation $f(y) = f(x) + (RL) \int_a^y (fH + fG)$.

THEOREM 1. If H and G are functions from $R \times R$ to N such that $G \in OA^0$ and OB^0 and $H \in OL^0$ on [a, b], then GH and $HG \in OA^0$ and OM^0 on [a, b].

This is Theorem 2 in [2, p. 494].

If H and $G \in OA^0$ and OB^0 and f has bounded variation on [a, b], it follows from Theorem 3.5 [1, p. 303] that $f(y)H(x, y)+f(x)G(x, y) \in OA^0$ on [a, b].

THEOREM 2. If H and G are functions such that H and $G \in OA^0$ and OB^0 and $(1-H) \in OI^0$ on [a, b], then $_x \prod^y (1+G)(1-H)^{-1}$ exists for $a \le x < y \le b$ and, if f is a function, the following statements are equivalent.

- (1) $f(y)H(x, y) + f(x)G(x, y) \in OA^0$ and $f(x) = f(a) + (RL)\int_a^x (fH + fG)$ for $a \le x \le b$.
 - (2) If $a \le x < y \le b$, then $f(y) = f(x)_x \prod^y (1+G)(1-H)^{-1}$.

PROOF. Let $A=(1+G)(1-H)^{-1}$, then $A-1=(H+G)(1-H)^{-1}\in OB^0$. Since $H\in OB^0$ and $1-H\in OI^0$, then $(1-H)^{-1}\in OL^0$ and, by Theorem 1, $A-1\in OM^0$ and $_x\coprod^y A$ exists on [a,b]. Furthermore, if f is bounded, then $(L)\int_a^b \left|f(\cdot)\prod A-A(\cdot,\cdot)\right|=0$. It follows from Theorem 5.1 [1,p.310] that the two statements are equivalent. Note that $_a\prod^x A$ is a bounded function.

2. Principal theorems. A corollary to the following theorem is obtained by using the conditions enclosed by brackets in place of those in quotation marks.

THEOREM 3. If H and $G \in OA^0$ and OB^0 on [a, b], the following statements are equivalent:

- (1) There is a function f and numbers p and q such that $a \le p < q \le b$, "f(p) = 0" $[f(p) \ne 0]$, " $f(q) \ne 0$ " [f(g) = 0], f has bounded variation on [p, q] and $f(x) = f(p) + (RL) \int_{p}^{x} (fH + fG)$ for $x \in [p, q]$.
- (2) There is a number $t \in [a, b]$ such that $t \neq a$ and " $1 H(t^-, t)$ " $[1 + G(t^-, t)]$ is zero or a right divisor of zero or such that $t \neq b$ and " $1 H(t, t^+)$ " $[1 + G(t, t^+)]$ is zero or a right divisor of zero.

PROOF. (1) \rightarrow (2). Let S be the number set such that $x \in S$ iff $x \in [p, q]$ and f(x) = 0; then S has a least upper bound t and $p \le t \le q$. If $f(t) \ne 0$, then $a \le p < t$,

$$f(t) = f(p) + \int_{p}^{t} fH + fG = f(t^{-}) + f(t)H(t^{-}, t)$$

and

$$0 = f(t^-) = f(t)[1 - H(t^-, t)]$$

and therefore $1-H(t^-, t)$ is zero or a right divisor of zero. If f(t) = 0, then $t < q \le b$ and

$$f(t^+) = f(p) + \int_{0}^{t^+} fH + fG = f(t) + \int_{t}^{t^+} fH + fG = f(t^+)H(t, t^+)$$

and therefore $f(t^+)[1-H(t,t^+)]=0$ and $1-H(t,t^+)$ is zero or a right divisor of zero, provided $f(t^+)\neq 0$. Suppose $f(t^+)=0$; then there is a number c such that t< c< q and $(1-H)\in OI^0$ on (t,c]; hence, by Theorem 2, if $x\in (t,c]$, then

$$f(x) = f(t^+) + \int_{t^+}^x fH + fG = f(t^+)_{t^+} \prod^x (1 + G)(1 - H)^{-1} = 0.$$

Therefore, t is not the least upper bound of S.

(2) \rightarrow (1). Suppose $t\neq a$ and $1-H(t^-, t)$ is zero or a right divisor of zero; let p=a, q=t, k be a nonzero element of N such that $k\left[1-H(t^-, t)\right]=0$, and let f be the function such that f(x)=0 for $x\in [a, t)$ and f(t)=k. If $x\in [a, q)$, then $f(a)+\int_a^x fH+fG=0=f(x)$. If x=q=t, then

$$f(a) + \int_{a}^{t} fH + fG = f(t^{-}) + \int_{t^{-}}^{t} fH + fG = f(t)H(t^{-}, t)$$
$$= f(t) - k[1 - H(t^{-}, t)] = f(t) = f(x).$$

Suppose $t \neq b$ and $1 - H(t, t^+)$ is zero or a right divisor of zero. There is a number q such that t < q < b and such that $1 - H \in OI^0$ on (t, q]. Also, there is a nonzero element $k \in N$ such that $k [1 - H(t, t^+)] = 0$. Let p = a and define f to be the function such that f(x) = 0 for $x \in [a, t]$ and

$$f(x) = k_{t+} \prod^{x} (1+G)(1-H)^{-1}$$
 for $x \in (t, q]$;

then $f(t^+) = k$. If $x \in (t, q]$, then

$$f(p) + \int_{p}^{x} fH + fG$$

$$= \left(\int_{t}^{t^{+}} + \int_{t^{+}}^{x}\right) (fH + fG) = f(t^{+})H(t, t^{+}) + \int_{t^{+}}^{x} fH + fG$$

$$= k - k[1 - H(t, t^{+})] + \int_{t^{+}}^{x} fH + fG = k_{t^{+}} \prod_{t^{+}}^{x} (1 + G)(1 - H)^{-1}$$

$$= f(x).$$

Since H and $G \in OB^0$ and f is bounded on [p, q], then fH+fG and f have bounded variation on [p, q].

PROOF OF COROLLARY. Since $f(y) = f(x) + (RL) \int_x^y fH + fG$ for $a \le x < y \le b$ iff for $a \le x < y \le b$

$$f(x) = f(y) - (RL) \int_{x}^{y} fH + fG = f(y) + (RL) \int_{y}^{x} f(-g) + f(-h),$$

where g(y, x) = G(x, y) and h(y, x) = H(x, y), it follows that this corollary is a special case of the preceding theorem with -g and -h playing the roles of H and G, respectively.

LEMMA. If $f(x) = f(a) + (RL) \int_a^x (fH + fG)$ for $x \in [a, b]$, then

(1) if $x \in (a, b]$, $f(x)[1-H(x^-, x)] = f(x^-)[1+G(x^-, x)]$, and

(2) if
$$x \in [a, b)$$
, $f(x^+)[1 - H(x, x^+)] = f(x)[1 + G(x, x^+)]$.

THEOREM 4. Given: $a \le p \le b$; H and $G \in OA^0$ and OB^0 on [a, b]; if a < p, then $H(p^-, p) = 1$; if p < b, then $H(p, p^+) = 1$ and $1 + G(p, p^+)$ is not a right divisor of zero; there is a function f of bounded variation on [a, b] such that $f(p) \ne 0$ and $f(x) = f(a) + (RL) \int_a^x (fH + fG)$ for $x \in [a, b]$; and u is a function such that u(x) = 0 if $x \ne p$.

Conclusion. If $x \in [a, b]$, then $u(x) = u(a) + (RL) \int_a^x (uH + uG)$.

PROOF. If a , then <math>u(x) = 0 for $a \le x < p$ and

$$u(a) + \int_{a}^{p} uH + uG = u(p)H(p^{-}, p) = u(p).$$

If $a \leq p < b$, then it follows from the lemma that

$$f(p)[1+G(p,p^+)]=f(p^+)[1-H(p,p^+)]=0;$$

hence, $1+G(p, p^+)=0$ and, if $x \in (p, b]$, then

$$u(p) + \int_{p}^{x} uH + uG = u(p) + u(p^{+})H(p, p^{+}) + u(p)G(p, p^{+})$$
$$= u(p)[1 + G(p, p^{+})] = 0 = u(x).$$

If $a , it follows from the two preceding results that <math>u(x) = u(a) + (RL) \int_a^x (uH + uG)$ for $x \in [a, b]$.

In the following theorems the symbol $\langle p, q \rangle$ denotes a subset of [a, b] such that

- (1) $1-H \in OI^0$ on $\langle p, q \rangle$ and $(p, q) \subseteq \langle p, q \rangle \subseteq [p, q]$;
- (2) H has a discontinuity of 1 at p provided $p \neq a$, and at q provided $q \subseteq b$; and
- (3) $p \in \langle p, q \rangle$ iff $H(p, p^+) \neq 1$, and $q \in \langle p, q \rangle$ iff $H(q^-, q) \neq 1$. Also, if $p \in \langle p, q \rangle$ and $a \neq p$, then p', p^* denotes p^- , p; if $p \notin \langle p, q \rangle$, then p', p^* denotes p, p^+ ; if $q \notin \langle p, q \rangle$, then q', q^* denotes q^- , q; and if $q \in \langle p, q \rangle$, then q', q^* denotes q, q^+ ; if $a \in \langle p, q \rangle$, the $p^* = a$.

THEOREM 5. Given. $a \leq p < q \leq b$; H and $G \in OA^0$ and OB^0 ; $(1-H) \in OI^0$ on $\langle p, q \rangle$; either $a \in \langle p, q \rangle$, or $a and <math>H(p^-, p) = 1$, or $a \leq p \notin \langle p, q \rangle$ and $H(p, p^+) = 1$; either $b \in \langle p, q \rangle$, or $b \geq q \notin \langle p, q \rangle$ and $H(q^-, q) = 1$, or $b > q \in \langle p, q \rangle$ and $H(q, q^+) = 1$; if $x \in [a, b]$, then neither of $1+G(x^-,x)$ or $1+G(x,x^+)$ is a right divisor of zero; there is a function f with bounded variation on [a, b] and a number $t \in \langle p, q \rangle$ such that $f(t) \neq 0$ and $f(x) = f(a) + (RL) \int_a^x (fH + fG)$ for $x \in [a, b]$; u is a function such that u(x) = 0 for $x \notin \langle p, q \rangle$, $u(p^*) = 1$, and if $x \in \langle p, q \rangle$ then $u(x) = p^* \prod_a^x (1+G)(1-H)^{-1}$.

Conclusion. (1) If $x \in [a, b]$, then $u(x) = u(a) + (RL) \int_a^x (uH + uG)$.

(2) If the function w has bounded variation and is a solution of the given equation on [a, b], then $w(x) = w(p^*)u(x)$ for $x \in \langle p, q \rangle$ and, if there exists a number $c \in \langle p, q \rangle$ such that $w(c) \neq 0$, then $w(p^*) \neq 0$.

PROOF OF (1). If $a \notin \langle p, q \rangle$, it follows from the preceding theorem that u is a solution on $[a, p^*]$; hence, if $x \in \langle p, q \rangle$, then

$$u(a) + \int_{a}^{x} uH + uG = u(p^{*}) + \int_{p^{*}}^{x} uH + uG$$
$$= u(p^{*})_{p^{*}} \prod_{x}^{x} (1 + G)(1 - H)^{-1} = u(x).$$

Suppose $b \in \langle p, q \rangle$. It follows from Theorem 2 that u is a solution on $\langle p, q \rangle$; hence, if $x \in [q^*, b]$, then $u(q^*) = 0$ and

$$u(p^*) + \int_{p^*}^x uH + uG = u(q') + \left(\int_{q'}^{q^*} + \int_{q^*}^x\right) (uH + uG)$$

$$= u(q') + u(q^*)H(q', q^*) + u(q')G(q', q^*)$$

$$= u(q')[1 + G(q', q^*)] = 0 = u(x),$$

provided one of u(q') or $1+G(q', q^*)$ is zero.

In order to show that the preceding requirement is satisfied, we will consider two cases: $f(q') \neq 0$ and f(q') = 0. If $f(q') \neq 0$, then

$$0 = f(q^*)[1 - H(q', q^*)] = f(q')[1 + G(q', q^*)]$$

and $1+G(q', q^*)=0$ because $1+G(q', q^*)$ is not a right divisor of zero. If f(q')=0, then it follows from the corollary to Theorem 3 that there is a number z such that $t < z \le q'$ and such that $1+G(z', z^*)=0$; hence, $u(q')={}_{p^*}\prod^{q'}(1+G)(1-H)^{-1}=0$.

If $a \in \langle p, q \rangle$ and $b \in \langle p, q \rangle$, it follows from the two preceding results that

$$u(x) = u(a) + (RL) \int_a^x (uH + uG) \text{ for } x \in [a, b].$$

Let c be a number such that p < c < q; then, if $q^* \le x \le b$, it follows that

$$u(a) + \int_{a}^{x} uH + uG = u(c) + \int_{c}^{x} uH + uG = u(x).$$

PROOF of (2). If $x \in \langle p, q \rangle$, then, by Theorem 2,

$$w(x) = w(a) + \int_{a}^{x} wH + wG = w(p^{*}) + \int_{p^{*}}^{x} wH + wG$$
$$= w(p^{*})_{p^{*}} \prod_{x}^{x} (1 + G)(1 - H)^{-1} = w(p^{*})u(x)$$

and w(x) = 0 if $w(p^*) = 0$. Hence, if $c \in \langle p, q \rangle$ and $w(c) \neq 0$, then $w(p^*) \neq 0$.

THEOREM 6. Given. H and G are functions from $R \times R$ to N such that H and $G \in OA^0$ and OB^0 on [a, b]; if $x \in (a, b]$ and $1 - H(x^-, x)^{-1}$ does not exist, then $H(x^-, x) = 1$; if $x \in [a, b)$ and $[1 - H(x, x^+)]^{-1}$ does not exist, then $H(x, x^+) = 1$; if $x \in [a, b]$, then neither of $1 + G(x^-, x)$ or $1 + G(x, x^+)$ is a right divisor of zero.

Conclusion. There is a finite set of linearly independent solutions of the equation $f(x) = f(a) + (RL) \int_a^x (fH + fG)$ on [a, b] such that a function f is a linear combination of this set iff f has bounded variation on [a, b] and f is a solution to the given equation on [a, b].

PROOF. It is assumed that the equation has at least one nonzero solution. Let $\{x_i\}_0^n$ be the subdivision of [a, b] such that $x \in \{x_i\}_1^{n-1}$ iff $H(x^-, x) = 1$ or $H(x, x^+) = 1$; then $(1-H) \in OI^0$ on $\langle x_{i-1}, x_i \rangle$ for $i = 1, 2, \dots, n$.

Let P be the set of integers such that $i \in P$ iff $0 < i \le n$ and there is a solution f on [a, b] and a number $t \in \langle x_{i-1}, x_i \rangle$ such that $f(t) \ne 0$. For

each $i \in P$, define $c_i = x_{i-1}^*$ and u_i to be the function defined in Theorem 5, where c_i corresponds to p^* and $u_i(c_i) = 1$.

Let O be the set of integers such that $i \in Q$ iff $0 \le i \le n$ and $x_i \notin \bigcup_{i \in P} \langle x_{i-1}, x_i \rangle$ and there is a solution f on [a, b] such that $f(x_i) \ne 0$. For $i \in Q$, define w_i to be the function such that $w_i(x_i) = 1$ and $w_i(x) = 0$ if $x \ne x_i$; it follows from Theorem 4 that w_i is a solution of the equation on [a, b].

The set $\{u_i\}_{i\in P} \cup \{w_i\}_{i\in Q}$ of functions is the desired set. Since each function belonging to the set has bounded variation and is a solution of the equation on [a, b], then each linear combination of these functions is a solution and has bounded variation on [a, b]. If $\{k_i\}_{i\in P}$ and $\{h_i\}_{i\in Q}$ are subsets of N and if $m\in P$, then

$$\sum_{i \in P} k_i u_i(c_m) + \sum_{i \in Q} h_i w_i(c_m) = k_m u_m(c_m) = k_m;$$

a similar result holds for $m \in Q$. Therefore, if

$$\sum_{i \in P} k_i u_i(x) + \sum_{i \in Q} h_i w_i(x) = 0$$

for all $x \in [a, b]$, then each of the coefficients is zero; hence, the functions are linearly independent.

If f is a solution of the equation and has bounded variation on [a, b] and $x \in [a, b]$, then the summation

$$\sum_{i \in P} f(c_i)u_i(x) + \sum_{i \in Q} f(x_i)w_i(x) = g(x)$$

simplifies as follows:

- (1) if $i \in P$ and $x \in \langle x_{i-1}, x_i \rangle$, then $g(x) = f(c_i)u_i(x) = f(x)$, by Theorem 5;
 - (2) if $i \in Q$ and $x = x_i$, then $g(x) = f(x_i)w_i(x) = f(x_i) = f(x)$; and
 - (3) if $x \in \langle x_{i-1}, x_i \rangle$ and $i \notin P$ or if $x = x_i$ and $i \notin Q$, then g(x) = 0.

From the definition of P and Q, if the conditions in (3) are satisfied, then f(x) = 0. Hence, the above summation is f(x) for $x \in [a, b]$.

3. Comments. If N is a field and H and $G \in OA^0$ and OB^0 on [a, b], then each of the equations

$$f(x) = (RL) \int_{a}^{x} (fH + fG)\lambda, \quad f(x) = (R) \int_{a}^{x} fH\lambda$$

and

$$f(x) = (m) \int_{a}^{x} fH\lambda$$

has a solution on [a, b] iff H has a discontinuity k on [a, b], in which case $\lambda = k^{-1}$. If k is such a discontinuity of H, then there is a largest number $p \in [a, b]$ at which the discontinuity occurs and the function f can be defined on [a, b] as in Theorem $3(2) \rightarrow (1)$. The set of λ 's may be infinite but cannot be uncountable. The possibility that the equation $f(x) = f(a) + (RL) \int_a^x (fH + fG)$ has a solution f on [a, b] for which $f(a) \neq 0$ depends on the order of occurrence and relative values of the discontinuities of H and G.

The following conjectures are probably true.

1. Similar theorems will hold for the equations

$$f(x) = f(a) + (RL) \int_{a}^{x} (Hf + Gf),$$

$$f(x) = f(a) + (RL) \int_{a}^{x} (fH + Gf)$$

and

$$f(x) = f(a) + (RL) \int_{a}^{x} (Hf + fG).$$

- 2. The set R can be any linearly ordered set [4, p. 149].
- 3. In Theorems 4 and 5 the restrictions on 1-H can be relaxed to permit $1-H(x^-, x)$ and $1-H(x, x^+)$ to be right divisors of zero.

BIBLIOGRAPHY

- 1. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322. MR 32 # 6167.
- 2. ——, A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23. (1969), 493-500.
- 3. J. V. Herod, Multiplicative inverses of solutions for Volterra-Stieltjes integral equations, Proc. Amer. Math. Soc. 22 (1969), 650-656.
- 4. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math 7 (1963), 143-173. MR 26 #1726.
- 5. ——, A linear initial-value problem, Bull. Amer. Math. Soc. 69 (1963), 314-329. MR 26 #4133,

SOUTHWEST TEXAS STATE UNIVERSITY, SAN MARCOS, TEXAS 78666