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Abstract. If a and b are degrees of unsolvability, a is called a

minimal cover of b if b<a and no degree c satisfies b<c<a. The

degree a is called a minimal cover if it is a minimal cover of some

degree b. We prove by a very simple argument that 0" is not a

minimal cover for any n. From this result and the axiom of Borel

determinateness (BD) we show that the degrees of arithmetical

sets (with their usual ordering) are not elementarily equivalent to

all the degrees. We also point out how this latter result can be

proved without BD when the jump operation is added to the

structures involved.

Our notation is standard. We use N to denote the set of all natural

numbers and "l.u.b." to abbreviate "least upper bound."

To prove that 0" is not a minimal cover for any n, it is convenient

to prove a somewhat stronger result, both for the sake of extra corol-

laries and in order to have a sufficiently strong inductive hypothesis

in the proof.

Theorem 1. If a 2^0" and a is a minimal cover of b, then 6 3:0".

Proof. The proof is by induction on n. The theorem is trivial for

n = 0. We now assume the theorem for n = k and prove it for n = k +1.

Suppose a 3:04+1 and a is a mini nal cover of b. Let c = l.u.b. [o*+1, b}.

Clearly b^cf^a and so c = b or c = a. If c = b, then 0k+1^b as re-

quired. Now suppose c = a. We claim that then a is r.e. in b. Since

a 3:0*, it follows from the induction assumption that fo3;0*. Thus

0*+i js r e m Jj)j since it is r.e. in 0*. Hence a is the l.u.b. of two de-

grees r.e. in b and so must be r.e. in b. By relativizing the theorem of

Friedberg and Muchnik that no r.e. degree is minimal [6, p. 66,

Corollary l], it now follows that a is not a minimal cover of b, con-

trary to hypothesis.

Corollary 1. If a^0n and a is r.e. in 0", then a is not a minimal

cover.

Received by the editors October 21, 1969.

AMS Subject Classifications. Primary 0270, 0277.
Key Words and Phrases. Recursive function, degree of unsolvability, arithmetical

hierarchy, axiom of determinateness.

1 This research was supported in part by National Science Foundation grants

GP-7421 and GP-8866. The authors wish to thank D. A. Martin, A. H. Lachlan, and
the referee for helpful suggestions and information.

856



MINIMAL COVERS AND ARITHMETICAL SETS 857

Proof. Assume aSiO", a is r.e. in 0", and a is a minimal cover of

b. Then 6^0" by the theorem, so a is r.e. in b. As before, this is

impossible.

Corollary 2. If a is a minimal upper bound to {on:nEN}, then

a is not a minimal cover.

Proof. Immediate from the theorem.

Corollary 3. There exist 2Xo degrees which are not minimal covers.

Proof. This follows from Corollary 2 because Sacks has shown

[6, p. 131 ] that every countable ascending sequence of degrees has

2No minimal upper bounds.

Let ft be the collection of all degrees of arithmetical sets and let

2D be the collection of all degrees. In what follows we use the symbol

^ both for the ordering of all degrees and for the restriction of this

ordering to ft.

The axiom of Borel determinateness (BD) states that the game

G2(3C) (as defined in [5, p. 206]) is determined for every Borel subset

3C of 2". D. A. Martin has shown [4] that BD is implied by the exis-

tence of measurable cardinals and in fact by much weaker "large

cardinal" assumptions. Thus the following corollary is also a con-

sequence of these assumptions.

Corollary 4. iAssuming BD.) The structure (ft, ^) is not

elementarily equivalent to (2D, ^).

Proof. We shall need the following result of Martin [3, p. 688].

Let 9TC be a set of degrees whose union is a Borel subset of 2", and

suppose Sfll satisfies:

(1) (Va)(3b)[b^aAb£3TC].

Then if BD holds, 9TC must satisfy the stronger statement:

(2) (3a)(Vb)[b^a->bG3n;].

In particular now let 9TC be the collection of all degrees which are

minimal covers. The union of 311 is easily shown to be Borel and in

fact 2° in the arithmetical hierarchy. Also (1) is true by the rela-

tivized version of Specter's minimal degree construction [7, Theorem

4]. Thus, if <p is the first order statement which asserts (2), <p holds

in the structure (2D, :£). On the other hand, <p does not hold in

(ft, £=) because no 0" is a minimal cover.

It follows from Corollary 4 that (ft, ^) is not an elementary

substructure of  (2D,   :g). This  answers,   modulo   BD,  a  question
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raised by G. E. Sacks. We do not know whether Corollary 4 is prov-

able without BD, but it is easy to give an absolute proof of the follow-

ing weaker form of Corollary 4.

Proposition 1. The structure (2D, ^,') is not elementarily equiva-

lent to (a, g, ')•

Proof. Let <p be the sentence:

(3a)(3fo)(Vc)[c gaAc£b-»c'£aAc'£&].

Obviously ip does not hold in (ft, ^, '). On the other hand, by

the proof of a theorem of Kleene and Post [2, Theorem 3], the set of

degrees J0":«G^1 has a pair of upper bounds a, b such that every

lower bound to {a, b} is in fact ^0n for some n. Hence <p holds in

<»,=£,')•
In contrast to the foregoing, the structures (a, ') and (£>, ')

are elementarily equivalent. This can be shown by an elimination of

quantifiers argument using a slight extension of Friedberg's com-

pleteness criterion [l ]. The proof also shows that the common theory

of these two structures is decidable.

In closing we consider possible generalizations and analogues for

Theorem 1. We would like to extend Theorem 1 from the arithmetical

hierarchy to the hyperarithmetical hierarchy. However, we are un-

able to decide even whether 0" is a minimal cover. The root of the

difficulty here is that {0n:nEN} has no l.u.b.

On the other hand, some ascending sequences of hyperdegrees do

have l.u.b.'s, and thus it is easy to extend Theorem 1 into the trans-

finite for hyperdegrees. To this end we define hyperdegrees ha for

certain countable ordinals a by transfinite induction. Let h0 be

the minimum hyperdegree, and let ha+i be the hyperjump of ha,

provided ha is defined. Finally, if X is a limit ordinal, let h\

= l.u.b. {ha:a<\} provided all ha, ct<\, are defined and the l.u.b.

exists. (It is known that ha exists exactly for a<wf'.) Now if the

terminology for Theorem 1 is modified in the obvious way for hyper-

degrees, then it still holds when a, b are hyperdegrees and 0" is re-

placed by ha for any a such that ha is defined. The argument is

trivial at limit ordinals and virtually the same as before (with "111"

replacing "r.e.") at successor ordinals.
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