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Abstract. This paper is concerned with the problem of specify-

ing growth conditions on the positive function q(t) which imply

that all solutions of the nonlinear second order ordinary differential

equation y" +q(t) | y \ ° sgn y = 0, a > 0, are nonoscillatory on a half

line. Several different results are given, and the usual explicit mono-

tonicity condition on q has been avoided to a certain degree.

In the real, nonlinear differential equation

(1) y' + î(0|y|"sgny = 0,        C = d/dt),

let q(t) be positive, continuous and locally of bounded variation on a

half line (a, °o), and suppose that (Xa^l. Our purpose here is to

give several sets of conditions which imply that all solutions of (1)

are nonoscillatory. These conditions are of interest since the usual

explicit monotonicity condition on q can be avoided in some sense.

We begin with some preliminary facts and definitions. A real-

valued function f(t) is said to be locally of bounded variation on

[a, oo ) if/(f) is of bounded variation on each compact subinterval.

A real-valued function f(t) is said to be of class CBVioc[a, «>),

/(ECBVio<¡[a, *>), if/ is continuous and locally of bounded variation

on the half line [a, w). If /ECBVioc[a, »), t£[o, »), then/ has

the representation f(t) =/(t)+/+(¿, t)—•/_(/, r), f£ [a, <»), where

where/+,/_, for fixed t, are continuous, nonincreasing in t for a^t^r,

and nondecreasing in / for tftr. This representation is called the

Jordan decomposition of / (see [7, Chapter 2]). Throughout the

paper we will assume that the function q defined in (1) is positive and

of class CBVioc[a, °°). A solution of (1) with real initial values is

real-valued and exists on [a, <x>), [2], [5], [9]. Furthermore, if y(t)

is a solution of (1) then —y(t) is also a solution. A nontrivial solution

of (1) is called oscillatory if it has arbitrarily large zeros. A non-

trivial solution of (1) which is eventually of one sign is called non-

oscillatory, and (1) is called nonoscillatory if every nontrivial solution
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is nonoscillatory. Further results concerning (1) are given in   [l],

[6], [10], [12].
For purposes of comparison and convenience we will first state

the major results of the paper. In all of the results given here we

assume that q has the Jordan representation q(t) = q(a)+q+(t, a)

— q-(t, a), t^a. All integrals displayed in these results are improper

Riemann-Stieltjes integrals.

Theorem 1. In (1) let a>i, q(t)ECBVioc[a, oo), q(t)>0for t^a.

Assume that

/>  00 /»COsa~1q(s)ds < oo, I     qÇs^dq+is, a) < oo.

a J a

If

/I   CO

s"-1q(s)ds = 0,
i

then (1) is nonoscillatory.

Theorem 2. In (1) let a>\, q(t)ECBVloc[a, oo), q(t)>0for t^a.

Assume that

/•CO /»COq(syn°+»ds < oo, 1     qis^dq+is^) < oo.

a J a

If

/►   00

q(s)2'^+"ds = 0,
|

/Ae« (1) ¿5 nonoscillatory.

Theorem 3. In (1) let a>i, g(/)ECBVio,,[a, oo), q(t)>0 for t^a.

If
/» 00 f  00

(6) I    jfr)»/«-«>d» < oo, I    9(í)-i¿g+(í, a) < oo,
•Ja J a

/Ae» (1) is nonoscillatory.

Theorem 4. In (1) let 0<a<l, q(t)ECBVioc[a, oo), q(t)>0 for

t^a. Assume that

/• oo n oo

(7) I    saq(s)ds < oo, I    ^(^-^+(5, a) < oo.
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/>   OO

s«q(s)ds = 0,

then (1) is nonoscillatory.

Theorem 5. In (1) let 0<o:<l, g(¿)ECBVi00[a, oo), q(t)>0 for

t^a. Assume that

X0O /»  OO
q(syi(«+i)ds < oo, j     qis^dq+is, a) < oo.

If

/>   00

ç(.r)1/(a+1Vi = 0,

i

/Ae» (1) is nonoscillatory.

Theorem 6. In (1) let 0<a<l, q(t)ECBVloc[a, oo), q(t)>0 for

t^a.If

/■ 00 /»oo

^(j)¿s < oo, I     ^(i)-1^^, a) < 00,

a ■'a

/Aera (1) w nonoscillatory.

Before proceeding any further, we must explain the significance

of the integral condition

(12) f   q(s)-Hq+{s,a) < ».
J a

As a consequence of the additivity properties of the total variation

of q, it is clear that if (12) holds, then f? q(s)~ldq+(s, t) < 00 for any

fixed T^a. If q is a monotone decreasing function then (12) holds.

Furthermore, it was shown in [4] that if (12) holds, then q is of

bounded variation on [a, 00). The following lemma gives some indi-

cation of the type of function q which satisfies (12). A proof of this

lemma was given in [4].

Lemma 1. Let b(t), c(t) be positive, continuous and of bounded varia-

tion on [a, 00). // b(t) ^ô>0, and c(t) is nonincreasing, then (12)

holds.

We note that Theorem 1 gives an independent proof of the well-

known result of Atkinson [l]. For if q is continuously differentiable,
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decreasing and f° saq(s)ds< », then (2), (3) hold. Theorems 1, 2, and

3 are approximately of the same degree of generality. For if q(t) —t"',

then a simple calculation shows that we must have <r>a + l. Con-

sequently these results are not as sharp as those given by Kiguradze

[lO], Nehari [12] and Coffman and and Wong [2] in the case when

g is a monotone function. Theorem 6 generalizes a recent result of

Heidel [ö] in that we have removed an explicit monotonicity condi-

tion on q. The results given in Theorems 4, 5 and 6 are also approxi-

mately of the same degree of generality. For if q(t)—t~", then a

simple calculation shows that we must have <r>2.

The proofs of these theorems are preceded by an important lemma.

Lemma 2. In the differential equation

y" + ?(0| y|°sgny = o,

let 0<a and assume that q(t)^CBV¡oc[a, <x>), q(t)>0 for t^a. Let

tG[û, °°) be fixed but arbitrary and let q{t)=q{r)-\-q+(t, t)—g_(/, r)

be the Jordan decomposition of qfor ¿£ [a, «). Then for ¿E| [a, °°),

E(r) exp j- J    qis^dq-is, r)\

(13)

S Eit) ik E(t) exp j J  q(s)-idq+(s, r)| ,

B(r) exp|- J   qtf-Hq+is, r)\

(14)

è B{t) Ik B(r) exp|J ?(i)-^_(i,r)J- ,

where

E(t) m y'(ty/2 +(a+ 1)^(0 | y(t) \"+\        B(t) = q{t)^E(t).

This lemma is similar to a special case of a result which was an-

nounced by Izjumova and Kiguradze [9j. A different proof of this

lemma was given in [4], where we used integral inequalities for

Riemann-Stieltjes integrals. As was noted in [4], the estimates given

in Lemma 2 are not valid if the continuity condition on q is relaxed.

This follows from the fact that q(t) and q+(t, a), q-{t, a) are, in

general, simultaneously continuous or discontinuous, and hence the

integrals in (13), (14) do not exist. Techniques for partially cir-

cumventing this problem were outlined in [4]. However, since

nothing new seems to accrue in this case, we have omitted it here.



82 H. E. GOLLWITZER [September

Proofs of Theorems 1 and 2. If a>l and y{t) is any nontrivial

solution of (1), then y{t) is also a solution of the linear equation

(15) u" + uq(t) | y(t) \a~l = 0.

As a consequence of (2), we see from (13) that y'(t) is bounded on

[a, oo). Hence \y(t)\ ^Ct for large / and some constant C. We have

taken r=a in (13). Since (3) holds, and hence

/>  00 /»  00q(s) | y(s) \a~1ds S hm sup t J     (Cs)a~iq(s)ds = 0,

a well-known theorem of Hille [8, p. 246] applies and therefore (15),

and consequently (1), is nonoscillatory. The proof of Theorem 1 is

complete.

The proof of Theorem 2 proceeds in exactly the same manner. If (4)

holds, then from (13) it follows that | y(í)| a_1^Cg(/)(1-a)/il+a)

for some constant C. The arguments used in the proof of Theorem 1

apply here also and hence (1) is nonoscillatory. This completes the

proof of Theorem 2.

Proof of Theorem 3. The proof of Theorem 3 follows the original

argument given by Atkinson [l]. Assume, for the sake of contradic-

tion, that y(t) is an oscillatory solution of (1). Since solutions are

unique, there is a sequence of zeros {tn} of y(t) such that y'(tn)>0,

tn—»oo. Let t = sn>tn be the first value of t for which the derivative

vanishes. In (13), with r = tn, we have the estimate

if q(s)-ldq+(s, tn)\ .(16) 2q(t) | y{t) |«+* Ú /(O2 exp <^ J   q{s)~Hq+{s, Q

We use this estimate together with the arguments of Atkinson to

complete the proof of Theorem 3.

An examination of the proof of Theorem 3 shows that the result

also holds when o = l. In this case we have a generalization of a

theorem of Leighton [ll, p. 43].

Proof of Theorem 4. The proof of this theorem is similar to the

one given by Atkinson [l], but the techniques are different. Assume,

for the sake of contradiction, that y(t) is a nontrivial oscillatory solu-

tion of (1) with 0<a<l. There must be a sequence of zeros {t„} of

y(t) with y'(tn) >0, ¿„-»-oo. For if y'(tn) =y(tn) =0, then from (13), with

T = tn, it follows that y(/)=0 and this is a contradiction. If tn-/*<o,

there must be a subsequence of {/„} converges to a finite value c.

By Rolle's theorem there must also be a sequence {r*} such that

Ti—>c, y'(Tk) =0. Since all solutions of (1) exist on [a, oo), we see, by
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continuity, that y(c) =y'(c) =0. But this contradicts the fact that

y(t)fáO.
Let t = sn>tn be the first value of / for which y'(t) vanishes. From

(1), y"(¿)=0 on [tn, s„]. Two integrations of this inequality over

[tn, t] show that y(t) ^y'(t„)t on [tn, sn]. If we use this estimate for

y(t) and integrate (1), then

(17) y'(tn) = j nq(s) | y(s) \-ds ^ y'(tn)a f   s"q(s)ds.

However, from (14) and the second integral condition in (7), it

follows that

(18) /(/„)> ^ C*q{tn),

where C is a positive constant which does not depend on ¿„. We have

taken r = a in (14) to obtain this estimate. Combining (17) and (18)

we obtain

Ln

C ^ ?(0(a_1)/2   I     sq(s)ds.

Since tn—><x> and (8) holds, this inequality eventually leads to a

contradiction and hence (1) is nonoscillatory. The proof of Theorem 4

is complete.

The proof of Theorem 5 is similar and will not be given here.

Proof of Theorem 6. This theorem is a slight generalization of

a result of Heidel [ó]. Assume, for the sake of contradiction, that

y(t) is an oscillatory solution of (1) with zeros at t = tK, £„—►«>. Let

t = sn be the unique point in [tn, tn+i] where \y(t)\ attains its maxi-

mum. Since (11) holds, we can use (14) (here we take r = a) to assert

that lim inL.-.oolyfs,,)! >0. However, Heidel [6] has shown that if

f sq(s)ds< o° and y(t) is an oscillatory solution of (1), then lim(-My(i)

= 0. Hence we have a contradiction and (1) is nonoscillatory. The

theorem is complete.
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