
A GENERALIZATION OF ZARISKI'S
MAIN THEOREM1

E. GRAHAM EVANS, JR.

Abstract. This note extends techniques of Peskine and Zariski

to prove a generalization of Zariski's Main Theorem which allows

infinite integral extensions of finitely generated rings.

The purpose of this note is to extend Peskine's treatment of

Zariski's Main Theorem to allow for infinite integral extensions or

geometrically to the "factorization of an integral morphism by a

morphism locally of finite type." The author assumes that the reader

has a copy of [3 ] at hand for comparison in order to avoid needless

repetition of detail.

This note was a portion of the author's Ph.D. thesis written under

the direction of Professor Irving Kaplansky. The author wishes to

thank Professor Kaplansky for his assistance and particularly for his

suggesting of a slightly weaker form of Lemma 2 which began the in-

vestigation.

All rings are assumed to be commutative with a unit. Rs stands for

R localized at the multiplicative set S= {1, 5, s2, s3, ■ • • }. Inclusions

of one ring in another assume that the smaller ring has the same unit

as the larger.

Definition. Let RE T be rings and P a prime ideal of T. Then P is

isolated over Ri^P if P is maximal and minimal with respect to the

primes of T whose intersection with R is Rr\P.

Theorem. Let RET with R integrally closed in T such that there exist

ti, • ■ ■ , tnET with T integral over R[h, ■ • •,/„]. If a prime ideal P of

T is isolated over P(~\R, then there exists on sER—PC\R such that

T, = RS.

Proof. The proof proceeds in three steps: (a) we reduce to the

case m = 1 following almost exactly Zariski's treatment [4, p. 523];

(b) we reduce the case n = l to Peskine's Lemma 5 ; (c) we refer the

reader to Peskine's Lemma 5 observing that Peskine's Lemma 3,
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proposition on p. 123, and Lemma 5 are only stated for the local case

but his Lemma 3 is used in the global case. However only trivial ad-

justments of the proofs are needed to prove all three in the global case.

(a) First we need a lemma, which occurs in the middle of one of

Peskine's proofs, which indicates where the two hypotheses of our

version of the theorem are used.

Lemma 1. Let R(ZTbe rings such that there exists tiÇzT, i = 1, ■ ■ ■ , n,

with T integral over R [h, ■ ■ ■ , tn]- Let P be a prime ideal of T maximal

with respect to being disjoint from M = R—PC\R. Let S be any subring

of T which contains R. Then PC\S is maximal with respect to being dis-

joint from M.

Proof. Localizing R, S, and T on M we can assume that P(~\R is

maximal. Factoring out by Rf~\P, SC\P and P we can assume that

R and T are fields. Then R[h, ■ ■ • , tn] is a field since T is integral

over it and T is a field. But the only finitely generated algebras over

fields that are fields are algebraic extensions. Hence R[h, ■ ■ • , tn]

is algebraic over R. Hence T is algebraic over R. But then 5 is a field

since any subring of an algebraic extension is a field. Hence PC\S is

maximal disjoint from M as desired.

Now assuming the theorem is true for n = 1 we prove the general

result by induction on n. Assume the theorem is true for m we want

it for OT + 1. So we have the hypothesis with T integral over

R[h, ■■ • , tm+i]. Let 5 be the integral closure of R[h, ■ ■ ■ , tm]. Then

S is integrally closed in T, T is integral over R [tm+i] and P is isolated.

Hence there exists an rCzS—Pi^S such that Sr=Tr. Hence no prime

of S contained in Pi~\S can intersect R in Pf~\R. By Lemma 1 no

prime containing P(~}S can intersect R in Pi~\R. Hence Pi\S is iso-

lated over Pr\R. By the case m of the theorem there exists an r'ÇzR

-PnR such that Rr.=Sr>. Then r/i =r"/r' where r"$P since r and

r'(£P. Let s=r"r'. Then R, = Se and S, = T,. Hence R, = T, as desired.

(b) First we need a lemma which in some form appears in Peskine

[3, Lemma 2], Zariski [4, p. 524], and Krull [2, p. 135].

Lemma 2. Let RC_R[x] be rings with R integrally closed in R[x], P a

prime ideal of R[x] and Q=Pf~\R. Then either

(1) Every equation satisfied by x over R has all its coefficients in Q, or

(2) There exists an sÇzR — Q such that Rs=R[x],.

Proof. We assume that some equation satisfied by x over R has

some coefficient in R — Q and proceed by induction on the degree.

n = \. Then rx —1 = 0. If rtfzQ, then x=t/r in RT. Hence Rr = R[x]r.

If r£<2, then rxEP- Hence /£Pr\i? = <2.
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(*) r„+i*n+1 + • ■ • + r0 = 0

where the riER and some r^Q. If rn+i(£Q, then x is integral over

Rrn+1 and x is in i?[x]rn+1. Hence Rrn+1=R[x]r„+1. Ii rn+iEQ, then

multiplying (*) by rJ+J and regrouping shows that rn+ix is integral

over R. Hence rn+ixER- If rn+ix(£Q, then we are in the case n = l.

If rn+ixEQ, then regrouping (*) as

(**) irn+lx + rn)x" + rn.ix"-1 + ■ ■ ■ + r0 = 0

we get a new equation of degree n for x over R. Ii some r¿ with i<n

was not in Q it still is not in Q. If rn^Q, then rre+iX-f-''nC<3- Hence

(**) is an equation of the desired type of lower degree. Hence there

exists an sER — Q such that Rs=R[x]s by the inductive hypothesis.

Now we reduce the n — 1 case of the theorem to the case oí RET

with R integrally closed in T, T a finitely generated R[t] module for

some tET, and P a prime of T isolated over PC\R. In the general

« = 1 case let Q = Pí~\R. Then if (2) of Lemma 2 holds for i?C#[¿]

then R, =R[t]s but R, is integrally closed in T, while Ts is integral

over i?[i],. Hence R, = TS. Thus (1) of the lemma holds.

Hence the kernel of the map from i?[X] to R[t] given by sending

X to / is contained in Qi?[X]. Thus the chains of prime ideals in R[t]

intersecting R in Q are all of length 1 with Qi?[i] being the unique

minimal one. If Pf^\R[t] =QR[t], then there would be a prime prop-

erly containing PC\R [t] also intersecting R in Q contrary to Lemma 1.

Hence PAR [«]£(>£[*].
Pick fEPf^R[t]-QR[t]. P is minimal over QT. Hence there exists

integers m and n greater than 0, an element vET—P, qiEQ, and

tiET such that
m

(***) * = E iu

Let T'=R[t, v, h, ■ ■ ■ , tm]. Then T' is a finitely generated R[t]

module since T is integral over R[t].

It is enough to show that P(~\T' is isolated over Q. For then there

would exist an sER — Q such that RS = T'S and Ra integrally closed

in Ts while T, is integral over T'¡. Thus Rs = Ts.

By the Lemma 1, no prime ideal of T' containing PC\T' properly

can intersect R in Q. Hence, if Pf~\T' were not isolated, there would be

a prime ideal P' of T' contained in P(~\T' which intersected R in Q.

(***) holds in V. Hence P' must contain/. Hence PT\R[t]^QR[t].

Thus PT\R[t] =P(~\R[t]. But a chain of primes must have distinct
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intersection in any subring over which the ring is integral by Cohen

and Seidenberg [l, Theorem 4]. Hence, P' =PC\R[t] is isolated and

TS=RS for some s£i? — Q-

(c) The final step is when T is a finitely generated R[t] module.

This is done in Peskine [3, pp. 123-125] using a conductor trick

which was in Zariski's original paper [4, pp. 524-525].
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