
IRREDUCIBLE POLYNOMIAL IDENTITIES IN
ANTICOMMUTATIVE ALGEBRAS

SEYMOUR KASS AND WILLIAM G. WITTHOFT1'2

Abstract. The methods introduced by J. M. Osborn for isolat-

ing those polynomial identities worth studying in commutative

algebras are here modified to yield three theorems for anticommu-

tative algebras. The first establishes a practical criterion for the

irreducibility of polynomial identities; the others list all canonical

polynomials of low degree that are irreducible relative to anticom-

mutativity.

Introduction. In the following we shall obtain a list of homogeneous

polynomial identities of degree no higher than four that are irre-

ducible in an anticommutative algebra over a field of characteristic

different from two. The idea of irreducibility is due to Osborn [2]

who was concerned with commutative algebras with unity elements.

We shall modify his definitions in the next section and produce a

criterion for irreducibility in Theorem 1 which does not call for alge-

bras with unity elements and so allows us to apply his methods to

anticommutative algebras. Our results are important because they

reduce the study of anticommutative algebras satisfying an identity

of degree ^4 to the study of those which satisfy one of the identities

in Theorem 3. The proof of Theorem 1 below is essentially due to

Osborn.

I. Definitions and criterion for irreducibility. Let 77 be the family

of all polynomials p over a field F that are homogeneous in each of

several noncommuting and nonassociating indeterminates x<. Let the

variables in each nonconstant p in 77 be indexed in the decreasing

order of their degree, i.e., if p is homogeneous in each of k>0 indeter-

minates, choose indices so that p is of degree di in x,- for i = \, 2, 3,

• • ■ , k, and ¿ie¿2^ • • • ^¿*>0. 77 is then partitioned into cells,

called types, unambiguously designated by ¿-tuples [di, d2, ■ • • , dt]
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for various k>0 (with the amendment that [O] be taken to designate

the type of all constant polynomials). The polynomial (x2y)x— x2(yx)

is, for example, of type [3, l]. The family of types is linearly ordered

by taking [c\, d, - • • , ck]< [di, dit ■ ■ ■ , dm] if and only if either

¿Ji Ci < ¿Ji di or ^2\ d = ¿j£ di but d,<Cf for the lowest index j at

which CfP^df. Thus [3, l] < [2, 2]. H then becomes partially ordered

when we take p < q if and only if type p < type q.

It is important to observe how the type of a polynomial is affected

by multiplication and composition. It is clear that the type of a

product of two nonconstant members of ii exceeds that of each factor.

As for composition, if p(xi, ■ • • , xn) is in H and/< is any polynomial

(not necessarily homogeneous) in indeterminates Xi, Xi, • • • , then

p(,Xi, ■ ■ ■ , fi, • ■ • , xn) is a sum of polynomials in H each obtained

from p by replacing Xi by a term of /,-. Terms of degree greater than

one yield polynomials of higher type than that of p, while terms of

degree one can lead to polynomials of type higher or lower than or the

same as that of p. For example, if p(x, y) =x2y, of type [2, l], then

p(x+y-{-z, y) is a sum of polynomials of types [3], [2, l], and

[l, 1, l]. In particular, linearizing a polynomial identity produces an

identity involving a polynomial of higher type, while identifying

variables in a polynomial lowers its type.

An algebra A over F satisfies p if and only if p(a) =0(EA for every

a(E.Ah, where k is the number of indeterminates in p. Similarly, A

satisfies a subfamily 5 of H if and only if A satisfies every p in 5. For

p and q in H we shall say that p implies q (p=>q) in case every algebra

that satisfies p satisfies q. Again, for subfamilies S and T of H, S=>T

if and only if every algebra that satisfies .S satisfies T. The zero poly-

nomial and the empty family imply each other but do not imply any

other polynomial or family. In case the union of a family 5 and a

single polynomial p implies no polynomial of type lower than p that

is not already implied by S alone, we say that p is irreducible with

respect to S. Thus p is irreducible with respect to S if and only if for

every q of lower type than p, if there exists an algebra which satisfies 5

but not q then there exists an algebra which satisfies {p} U5 but not q.

Among the polynomials implied by a polynomial p are those ob-

tained from p by partial or full linearization or by identification of

variables. If p is irreducible with respect to S, then all polynomials

so obtained from p are implied by S. The fundamental theorem about

irreducibility tells us that there are no other processes to worry about.

Theorem 1. A polynomial p in H is irreducible with respect to a

subfamily S of H if and only if, for each qÇLH, ifq<p and q is obtained
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from p by identifying variables in p or in some partial linearization of p,

then 5=>g.

Proof. Suppose all the polynomials so obtained from p are implied

by S. Let q be a homogeneous polynomial of lower type than p, and

let A be an algebra that satisfies 5 but not q. We shall prove p irre-

ducible with respect to 5 by constructing an algebra B that satisfies

[p)\J S but not q.

Say q is of type [h, h, • ■ ■ , tr] and degree t = j.tt. so that there is

an a = (fli, a2, ■ ■ ■ , aT) in AT for which qia) ¿¿0. Let E be the free non-

associative algebra without identity on r generators, z%, Zt, • ■ • , zT,

and let J be the ideal in E generated by the set Jo of all/(e) in E, for

some f ES and some eEEk, where k is the number of indeterminates

in /. Clearly E/J is then an algebra satisfying S. On the other hand

E/J does not satisfy q for the following reasons. The function z,i—»a<

has a unique extension to a homomorphism <p on E onto the sub-

algebra C of A generated by the a,. C, like A, satisfies 5 but not q, and

therefore JQker<p. Then C=(7i/J)/(ker#//) is a homomorphic

copy of E/J, so that E/J cannot satisfy q. In fact, q(z)(J;/, where

z=(zi, z2, ■ • ■ ,zr), since qia) ¿¿0 in C.

We will produce an enlargement I oî J such that Ti/7 still fails to

satisfy q but can be shown to satisfy p. Of course E/I satisfies S, since

JC7, and so can be taken as the desired algebra 73. It suffices to take

I = J-\-K where A is the span (and an ideal) of all monomials in E of

degree greater than /¿in z¿ for at least one ¿ = 1, 2, • • • , r.

To show that E/I fails to satisfy q we need the fact that J has a

basis consisting of homogeneous polynomials, for then we can con-

clude that ç(s)££7. Suppose g(z) =j(z)+&(z)E7 = J-\-K. Then kiz) is

a linear combination of monomials of high degree in at least one vari-

able, while each term in g(z) is of low degree in each. Thus g(z)

= ijiiz)—kiz))-\-kiz), where, since J has a homogeneous basis, jiiz)

and kiz) both lie in /. But then ç(z) =_/i(z) lies in J, contrary to what

we have observed. The existence of a homogeneous basis for J follows

from the homogeneity of the members of 5 as follows. For each fE S

and each eEEk,fie) is, by the bilinearity of multiplication in E, a sum

2Z;/(ej) m which each e¡ lies in Ek and has coordinates that are mono-

mials. Thus, the/(e¿) are homogeneous and span the same subspace

of E as Jo does. Now the ideal J consists of all sums of products

having a factor in the span of Jo, but each of these products is itself

a sum of homogeneous members of J. Thus J is spanned by poly-

nomials homogeneous in each of the z¡.

To show that E/I satisfies p, let p be of the type [ni, n2, ■ ■ ■ , nm]
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and degree n= ^3 w<. In case t<n,p(e) is of degree no less than n, for

each e = (ei, e2, ■ ■ ■ , em)ÇEEm, and so every term of p(e) is of degree

greater than t¡ in z¿ for some i. Thus p(e)(EK(ZI, and therefore E/I

satisfies p. In case t = n we further distinguish the cases m^r and

m>r. We will show that for each e in Em, p(e) lies in K whenever

m^r, while if m>r then p(e) is a sum of members of K and poly-

nomials obtained from p by identifying variables in p or in some

partial linearization of p.

When m=r we have gG [h, k, ■ • • , ¿r], ££[«i, «2, • • • , «r],

5<p, JJti" 2^««, and nk<tk for the least index & at which n^h.

But then there is an index h>k for which «a>4 and consequently

£(z) is of degree nn>tn in zR and so lies in K. In fact for every e in £r,

p(e) is, as already observed, a sum of polynomials p(e¡) in which each

e¡ has monomial coordinates. Should some coordinate of some e¡ have

total degree greater than one, p(e¡) will consist of terms of high degree

in some z,- and so lie in K. However, if each coordinate of e¡ is just

A,z,- for some i and some X.G^, then p(ej) still consists of terms each

of which is of high degree in some z¿. In case m < r essentially the same

argument holds: when each coordinate of ey = (en, e^, • • • , eim) is of

the form \¿z„ p(e¡) will have high degree in some z¿.

When m>r we have again various circumstances under which p(e)

lies in K, along with the additional possibility, occurring when each

coordinate of e is a linear combination of the z.'s, that p(e) is just a

polynomial in E obtained from p by identifying variables in some

partial linearization of p. Such a p(e) is either of high degree in some

Zi and so lies in K or else is of the same type as q, hence lower than

that of p. In the latter case 5 implies p(e) by hypothesis. So every

algebra that satisfies 51 satisfies p(e). Now E/I satisfies 5, hence satis-

fies ¿>(e), and therefore E/I satisfies p in all cases.

Because of Theorem 1 we are able to reduce, relative to a set 5 and

in a finite number of steps, every homogeneous polynomial to an

irreducible one, and thus discover a short list of all polynomial iden-

tities that are, in some sense, worthy of study. This reducibility of

polynomials is stated in the following corollary.

Corollary. If a polynomial p in H is not irreducible with respect to

a subfamily S of H, then there is a polynomial q<p obtained from p by

identifying variables in p or in some partial linearization of p that is

irreducible.

Proof. Since p is not irreducible it yields, by identification of

variables in p and in partial linearizations of p, a polynomial of lower

type not implied by S. Should the latter also not be irreducible, there
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is a polynomial q of least type so obtained from p and not irreducible.

But then there is a polynomial qi<q obtained from q and hence from

p by identification of variables and not implied by S. Then qi is irre-

ducible.

II. Low degree polynomials irreducible in anticommutative alge-

bras. In what follows we shall assume that char F^2. To make the

list of irreducible polynomials brief we shall record just one of those

of a common type that are equivalent in the presence of anticommu-

tativity. For example, let p\ßix, y) =Xxy-\-ßyx, with X and u in F.

Now pn produces the anticommutative law, and {^u, p\?}=>pio

whenever Xt^/í. Obviously pio=*p\» for all X and u, so, if we find pw is

irreducible with respect to pn we will call it the only irreducible poly-

nomial of type [l, l].

The polynomials xn, xy, and ixy)x are irreducible with respect to

pu because they produce, through linearization and identification of

variables, no polynomial of lower type, only x2, and only x3, respec-

tively, while pn=*p, x2, and x3. They are, however, uninteresting for

various reasons: every anticommutative algebra satisfies xn when

n>\, only trivial algebras satisfy x or xy, and only nil alternative

algebras satisfy pn and (xy)x. These last are nilpotent when they are

finite dimensional.

Theorem 2. With the preceding convention and exceptions the only

homogeneous polynomials of degree no greater than four over a field of

characteristic different from two that are irreducible with respect to

pn(x, y) =xy+yx are

(i) J(x, y, z) = ixy)z+iyz)x + izx)y,

(ii)   [(xy)x]x,

(iii) J(x, y, xy),

(iv) aixy)ixz)+ß{ [(xy)x]z— [(xz)x]y} +y{ [(xy)z]x— [(xz)y]x} +

(/3+y) [(yz)x]x, for some a, ß, and y, not all zero, in F, and

(v) .7(x, y, z)w — Jiw, x, y)z-\-Jiz, w, x)y — Jiy, z, w)x.

Proof. The only irreducible cubics not already described are the

multilinear ones, i.e., those of type [l, 1, l]. In the presence of the

anticommutative law these assume the form J\ßix, y, z) — ixy)z

-T-X(yz)x+/i(zx)y for some X, ju£7\ By setting x=y, we find that

[pn, -7x».}=>(X— fi)ixz)x. However, pn^>ixz)x as the example of the

Lie algebra of Euclidean 3-space shows: iij)i=j?¿0. So the irreduci-

bility of /*„ implies that X=/u. Again, setting x = z in J\ß we see that

[pn, J\r}=*il— X)(xy)x and consequently that X = l. Conversely,

J = Ju is irreducible,  since it produces,  through  identification  of



6 S. KASS AND W. G. WITTHOFT [September

variables, only the polynomials xl and x2z-\-(xz)x-\-(zx)x, both of

which are implied by pu.

In an anticommutative algebra every polynomial of type [3, l]

reduces to [(xy)«;]*; which is irreducible since it yields only x* of lower

type, the latter already implied by pu.

The typical polynomial of type [2, 2] is m\(x, y)=[(xy)x]y

-f-X [(xy)y ]x which produces, by identification of three of the variables

in its linearized form, x3y+ [(xy)x]x+\{ (x2y)x-\- [(xy)x]x} so that

[piu wx}=>(l+X) [(3cy)x]x. Now Pu=fr[(xy)x]x, since [(ij)i]i= — kp^O

in E3, so that m\ is irreducible only if X= — 1. Conversely, w_i is

irreducible because it yields only x* and polynomials of type [3, l]

each of whose terms has a factor x2, all of which then are satisfied by

anticommutative algebras. Observe that m_i(x, y) = J(x, y, xy) is the

polynomial that provides the defining identity for extended Lie

algebras [3].

Of type [2, 1, l], p(x, y, z)=a(xy)(xz)+ß[(xy)x]z+y[(xy)z]x

-\-8[(xz)x]y-\-e[(xz)y]x-r-ri[(yz)x]x is typical and yields, by identifi-

cation of variables

(i)    (ß+8)[(xy)x]y + (y+e)[(xy)y]x,

(ii)    (ô+i+7?) [(xz)x]x, and

(iii) (ß-\-y— 7])[(xy)x]x, of lower type than p.

Again, puztt$[(xy)x]x, so that p is irreducible only if ô+e-f-T;=/3-f-Y— rj

= 0, in which case y+e = — (ß + 8), and (i) becomes (j3 + §)w_i. Now

pn¥*m-i as the free anticommutative algebra on two generators

shows. Thusp is irreducible only if 5-f-€+r/=/3+7— r/=/3-|-5 = 0. Then

0= — ß, €= —y, and n=ß-\-y, so that p becomes polynomial (iv) of

the theorem. Now the only nonzero polynomials of lower type yielded

by p have factors x2 in every term, and so p is irreducible with respect

to anticommutativity.

Identifying variables in the general multilinear homogeneous

quartic,

q(x, y, z, w) = ai(xy)(zw) + at(yz)(xw) + a3(zx)(yw)

+ [a4(;r;:y)z + a^(yz)x + as(zx)y]w

+ [ai(xy)w + a%(yw)x + ag(wx)y]z

+ [aio(xz)w + au(zw)x + au(wx)z]y

+ [ais(;yz)w + au(zw)y + au(wy)z]x,

yields, among others, eight polynomials of lower type. Of type [3, l]

are

(i) [(a6 + aio + an) - (a6 + an + au)][(xz)x]x,
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(ii) [(«4 + on + au) — (a6 + a8 + ai»)][(«y)*]*i    and

(iii) [(a6 + <*9 + «12) — («4 + a7 + aio)][(yx)y]y.

Of type [2, 2] are

(iv)  (aB — a« + a8 — a9)[(xz)xjz + (a10 — au + ai3 — a16)[(a:z)z]x and

(v)    (a7 — a8 + aio — «n)[(xy)x]y + (a4 — a« + au — au)[(xy)y]x.

Of type [2, 1, 1] are

(a2 — a3)ixz)ixw) + (a6 — a6)[(xz)x]w + (a8 — as)[ixw)x]z
(vi)

+ (a™ + «13) l(xz)wjx — (a12 + a16) [(xw)zjx + (an + au) [(zw)xjx,

(ai — a2)ixy)ixw) + (a4 — a6)[ixy)x]w + (an — ai2)[(xw)x]y

(vü)
+ (a7 — a«) [(xy)wjx + (an — a») [ixw)y]x + (a8 — a«) [(yw)xjx,

and

..      — (ai-r-a3)(xy)(xz) + (a7 — a8)[(xy)*]z + («io — an)[(xz)x]y
(vm)

+ (a4 + ai6)l(xy)zjx + ( — au — at)[ixz)y\x + (a6 + ai3)[(yz)xjx.

Since pn=fr[ixy)x]x, the irreducibility of q requires that the coeffi-

cients of polynomials (i) through (iii) vanish and therefore that

ai2 = on — a6 + aT — a9 + a10,

(A) an = a6 — a6 + aio — au + au,

au =  — ai + a$ — a7 + a8 + ai3.

But then polynomials (iv) and (v) become

(iv)  (a6 — a6 + as — a9)w_i and

(v)   (a7 — a8 + aw — au)»-i, respectively, whose coefficients must

vanish if q is to be irreducible (since pn =/$ w_i). Thus

a» = a6 — ac + a8,

(B)
an = a7 — a8 + ai0.

Now the polynomials (vi) through (viii) become

ia2 — a3)(xz)(xw) + (a6 — ae) {[(xz)x]w — [(ot)ï]zJ
(vi)

+ (aio + ai3) {[ixz)w]x — [(xw)z]x} + (a6 — a6 + aw + an) [(zw) x] x,

(ai — aj)(xy)(w) + (a4 — a6) {[(xy)x]w — [(xw)x]y}
(vii) , . .   j

+ (a7 — ai3) j [(xy)wjx — [ixw)y\x\ +(a4 — a6 + a7 — au) [iyw)x\X,

and
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- (ai + a3)(xy)(xz) + (a7 — <*s) {[{xy)x]z — [(xz)x]y\
(vm) ( i

+ (a¡ — a1 + as +«i3) {[(xy)z]x — [(xz)y]x) + («j + a13) [(yz)x]x,

respectively. But these are just the irreducible polynomial (iv) of the

theorem, which is not implied by pu, as the free anticommutative

algebra on three generators shows. So q is irreducible only if the coeffi-

cients in (vi) through (viii) vanish. Combining this information with

(A) and (B) produces

ai = ai = a3 = 0

(C) ai = ßp*0,       îori = 4, 5, 6, 10, 11, 12

at « — ß, for i = 7, 8, 9, 13, 14, 15

but then q becomes polynomial (v) of the theorem. That q is irre-

ducible follows as in the preceding cases.

We can sharpen the statement of Theorem 2 somewhat. By the

corollary of Theorem 1 every polynomial in H not irreducible with

respect to pu implies a polynomial of lower type that is. At the same

time observe that each of the irreducible polynomials x and xy implies

every polynomial listed in Theorem 2, while (xy)x implies [(x;y)x]x,

and J implies J(x, y, xy). The irreducible polynomials xn, n>l, are

satisfied by every anticommutative algebra of characteristic p*2.

These remarks are summarized in the following statement.

Theorem 3. Every anticommutative algebra over a field of character-

istic different from two that satisfies a homogeneous identity of degree no

higher than four not already implied by the anticommutative law satisfies

one of the following:
(1) [(xy)x]x,

(2) J(x,y,xy),

(3) a(xy)(xz)+ß{ [(xy)x]z— [(xz)x]y} +y{ [(xy)z]x— [(xz)y]x}

+ (ß+y)[(yz)x]x,

(4) J(x, y, z)w — J(w, x, y)z + J(z, w,x)y — J(y,z, w)x.

The polynomials (1) through (4) are written in ascending order of

type, and / has a type lower than that of (1). By definition of irre-

ducibility, there is, for each polynomial p in this list, an anticommu-

tative algebra satisfying p but not satisfying any polynomial lower in

the list. In fact, a finite dimensional example of an algebra satisfying

(4) but not J is easy to produce once we observe that (4) is skew

symmetric in the presence of anticommutativity, for then (4) will be

satisfied by every 3-dimensional anticommutative algebra, while at

least one such is known not to be Lie.
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Let p be the polynomial (4) and let^E^- To show that

#(»(*), *(y), ris), wiw)) = sgn wpix, y, z, w)

for all x, y, z, w in an anticommutative algebra, it suffices to do so for

the cases that 7r is the transposition (xy) and the cycle ixyzw), for

these generate St. By substitution, use of the anticommutative law,

and the fact that J is skew symmetric in anticommutative algebras,

we conclude that p is skew symmetric. Thus p vanishes whenever two

of its variables are replaced by the same element from such an alge-

bra. Since p is multilinear it will be satisfied by any algebra for which

it is satisfied by a basis of the algebra. Thus, it is satisfied by every

algebra of dimension g 3, for then every replacement of variables in

p by basis elements necessitates using some basis element twice. The

algebra A with basis {x, y, z} and multiplication table xy = x, xz=y,

yz = 0, ab= —ba for all a, b—x, y, or z, is anticommutative, satisfies

p, and has a derived series A, A', A", A'" = 0 in which dim A' = 2 and

dim A" = 1. It is well known [l] that no such algebra is a Lie algebra.
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