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Abstract. We prove here a relation between the rate of growth

of the Nevanlinna characteristic of a meromorphic function /(z),

the size of a deficient value t, and the sets where/(z) is close to t.

1. Introduction. In the study of the distribution of values of mero-

morphic functions/(z), one finds that the size of the Nevanlinna de-

ficiency of a value, the measure of the subsets of certain circumfer-

ences on which the function is close to the value, and the rate of

growth of the Nevanlinna characteristic (as determined for example

by its order or lower order) are all interdependent. The purpose of

this note is to give an elementary insight into this connection.

Let/(z) be a nonconstant meromorphic function in \z\ <«. In

addition to the familiar symbols of Nevanlinna's theory

n(r,f),        N(r,f),       m(r,f),

T(r,f),    Ô(r,f),

and the order X and lower order fi defined by

log T(r,f)
X = hm sup-!

t->» log r
(1.1)

.   logre,/)
fi = am inf-,

r->» log r

we shall use the notation

(1.2) E(r) = {$:   0 á e < 2v,  \f(rew) |   > l},

and  denote  by   CE(r)   the  complement  of   E(r)   with respect to

[O, 2t). We define a sequence pm—> <» to be a y-sequence if

,. ,. ,. pmT'(Pm,f)
(1.3) hm sup —-—- S 7

m-*» T(pm, f)
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where T' denotes the derivative of T(r, /) with respect to r. Since

T(r, f) is differentiable for all r >r0 (see for example [l, p. 626]) and

rT'(r,f)/T(r,f) = d log T(r,f)/d log r

it is clear from the definitions (1.1) that there exists a 7-sequence for

every p^y^\.

We shall prove the following

Theorem. Let f(z) be a nonconstant meromorphic function, {pm\ a

y-sequence, and E(r) as in (1.2). Then, ifh{,x ,/) >0 we have

(1.4) lim inf meas E(pm) ^ 4 ctn-1 (-).
m-^» \5(»,/)/

In proving Theorem 1 we shall prove an inequality slightly better

than (1.4). In fact, taking

(1.5) sx = lim inf meas E(pm)

we shall prove

/sx\ /2x — sx\
(1.6) *7ê $(<»,/) ctni-j+S(0,/)ctni-J

from which (1.4) is apparent. (The inequality (1.6) remains valid in

the extreme cases sx = 0 or sx = 2ir so long as we adopt the convention

0-°o=0.)

It is perhaps worth pointing out that more sophisticated methods

of this nature have been developed in recent years by A. Edrei [3]

where the sequence \pm] is replaced by a different well-chosen se-

quence {rm}, the "Pólya peaks of order p" of the function (cf. [2],

[3], [ó]). It seems, however, that the methods developed thus far

regarding the quantities E(rm) and those developed here for E(pm)

yield results which are not best possible. In the case of the Pólya

peaks, Edrei has conjectured [4, p. 57] that

/4 /ô(°°,/)Y/2        \
lim inf meas E(rm) ^ min I — sin-11-I    ,2x1.

m->» \ p \      2      / /

2. Proof of (1.6). Set

1 R2 - r2
P(R, r, 0, 4>) =-—        (r < R)

2x R2 - IRr cos(0 - <p) + r2
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and recall the familiar properties of the Poisson kernel

67

(2.1) fJ o

P(R, r, 6, <b)d6 = 1,

(2.2) P(R, r, 6, 4>) > 0,

(2.3) P(R, r, 8, <p) = P(R, r, <p, 0).

It is without loss of generality that we suppose

/(*) * 0, °°

for 0 ^ pm — | s |   ^ em(em > 0), m = 1, 2,
(2.4)

In fact, since it is an elementary exercise to show that meas E(r) and

rT'{r, f)/T(r,f) are continuous functions of r>r0 (cf. [l, p. 626]), we

may always choose a 7-sequence "close to" the sequence  {pm}  for

which (2.4) is satisfied, and having the same value for sx in (1.5).

In what follows, we set

(2.5) g(R, r, i, w) = log
R2 — wre*

Rire* — w)

Now, for 0<pm— p^tm, by (1.2),  (2.1),  (2.3), and the Poisson-

Jensen formula we may write

Pm(m(pm,f) - m{p,f))

Pm  —   P

Pm
( — f        log I f(Pme») I   f    P(Pm, p, <b, 6)d<pdd

- — j f     log I f(pme<°) I P(Pm, p, 6, <b)d6dcb

+ — H g(Pm, P, 6, av)dd
¿* /(a,)=.0;|«,|<pra«' E(p)

-—      E       I    g(ßm,P,e,b,)de).

Interchanging the order of integration in the second integral and

writing S0 and Sw for the two sums in the preceding line we have
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Pm(m(pm,f) - m(p,f))

Pm  —   P

= -^—(~ f      log I/O»***) I  f   P(Pm, p, 4>, e)dHe
Pm  —   p\2irJ E(pm) J 0

f   log | /(p»c*) [  f    P(Pm, p, <t>, e)d<pdd
J 0 » £(p)

1

2x-

(2.6) +S2'"S2-)

B(pro) J CE M Pm — P

= ̂ f       log|/(pme*)|   r

■ f     iog|   '   , f

P(Pm, p, <t>, Q)d<p
-de

,     Pm   C , 1 C P(pm, P, <P, 6)dcp
+ — I !og i——r-r I       -de

2lT J CE ipm) \f{Pme®)\   J E(p) Pm —  P

2x(pOT — p)

Pm

2x(pm — p)

Now,anelementarycomputation(cf. [8,p. 17]), (2.1),and (2.2) yield

g(pm, p, 6, a„)

2x     J i

(2.7)

and

(2.8)

2x        J E(p) Pm  —   P

2 f     P(Pm,  | a,| , 6, arg a„)<f0j>[O
J £(p)

n(pm,f) - -^ S I
ZX       »/ ;

g(pm, p, 8, b„)
-ad

2x        J E(p) Pm  —   P

S f       P(Pm,  | b,\ , B, argb,)d6>0
CE M

as p—>pm.

Also, it is evident that
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Pm Ç {pm —  p)(pm + p)d<p

I
Pm   Ç"

(2.9) ii-
T  "   (1/2

2ir(pm   —   p)J FAp)   Pm —  2P™P C0S(Ö — <t>) + P2

(Pm + p)dß

1    ÇT

■K  J ni

) meas CE(p)  pm ~  2pmp COS ß +  p2

(l/2)me»s CE(pm)   1  — COS 0

1 meas CE(pm)
= — ctn-      (p —» pOT).

t 4

Add pmN'(pm,f) ( = n(pm,/)) to both sides of (2.6) and let p-^pm. After

dividing by T(pm, /), and applying (1.3), (2.7), (2.8), (2.9), and an

inequality similar to (2.9) for CE(p), we obtain (1.6).

3. Some consequences of (1.6). Suppose /(z) is a meromorphic

function having at least two deficient values

(3.1) 8(t!,/)-«!> 0,       5(r2,/) = ô2>0.

By taking a Möbius transformation of /(z) which sends Tx into 0 and

T2 into oo we deduce from (1.6) that the transformed function cannot

have a O-sequence and thus must have positive lower order. Since

/(z) has the same lower order it must again be positive. This fact has

been obtained previously by another method [5, p. 297]. The fact that

a meromorphic function of order zero cannot have two deficient

values was established earlier by Valiron [ö].

Similarly, by the same considerations as above, the first funda-

mental theorem of Nevanlinna's theory, and the mean value theorem,

we find that if /(z) has two deficient values (3.1) then there exists

7] = t] (6], 52) > 0 such that

T(ar, f)
lim inf-^ a*

r—      T(r,f)   '

for every a ^ 1.
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